\(\frac{a}{b}\) = \(\frac{b}{c}\) = ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2016

đề thiếu kìa bn,dòng cuối đó
 

2 tháng 3 2016

sửa đề lại đi,mk làm cho

10 tháng 3 2016

Theo t/c dãy tỉ số=nhau:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)

=>a=b=c

Mà a=2014=>a=b=c=2014

Khi đó \(a-\frac{2}{19}b+\frac{5}{33}c=2014-\frac{2}{19}.2014+\frac{5}{33}.2014=\frac{69536}{33}\)

Vậy...............

30 tháng 12 2017

thiếu cái gì đó hay gì đó bn

15 tháng 12 2018

Bài này easy! C/m a=b=c xong là ra rồi!

 \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\)

Thay vào,ta có: \(\frac{a^{2010}.c^5}{b^{2015}}=\frac{a^{2010}.a^5}{a^{2015}}=\frac{a^{2015}}{a^{2015}}=1\) (do a = b = c,ta thay b và c bởi a)

2 tháng 2 2018

Có : a/ab+a+1 = a/ab+a+abc = 1/b+1+bc = 1/bc+b+1

        c/ca+c+1 = bc/abc+bc+b = b/1+bc+b = b/bc+b+1

=> A = 1+bc+b/bc+b+1 = 1

Tk mk nha

2 tháng 2 2018

BÀI 1:

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{a\left(bc+b+1\right)}+\frac{abc}{ab\left(ca+c+1\right)}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a} +\frac{abc}{a^2bc+abc+ab}\)        

\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}\)       (thay   abc = 1)

\(=\frac{a+ab+1}{a+ab+1}=1\)

7 tháng 8 2016

- Giống giống hằng đẳng thức nhỉ??

25 tháng 1 2017

Ta có \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

\(\Leftrightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}=\frac{a^2+2ab+b^2}{c^2+2cd+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\left(1\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}=\frac{a^2-2ab+b^2}{c^2-2cd+d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\left(2\right)\)

Từ điều (1) và (2)

\(\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\Rightarrow\left(a+b\right)\left(c-d\right)=\left(a-b\right)\left(c+d\right)\)

\(\Rightarrow c\left(a+b\right)-d\left(a+b\right)=c\left(a-b\right)+d\left(a-b\right)\)

\(\Rightarrow ac+bc-ad-bd=ac-bc+ad-bd\)

\(\Rightarrow bc-ad=-bc+ad\)

\(\Rightarrow2bc=2ad\)

\(\Rightarrow bc=ad\)

\(\Rightarrow\left[\begin{matrix}\frac{a}{b}=\frac{c}{d}\\\frac{b}{a}=\frac{d}{c}\end{matrix}\right.\) ( đpcm )

đề sai phải là CMR \(\frac{a}{b}=\frac{c}{d}\) hoặc \(\frac{b}{a}=\frac{d}{c}\)