Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt : \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
\(\Rightarrow\frac{7b^2k^2+3bkb}{11b^2k^2-8b^2}=\frac{7d^2k^2+3dkd}{11d^2k^2-8d^2}\)
\(\Rightarrow\frac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\frac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}\)
\(\Rightarrow\frac{7k^2+3k}{11k^2-8}=\frac{7k^2+3k}{11k^2-8}\left(đpcm\right)\)
\(\Leftrightarrow\left(2a+13b\right)\left(3c-7d\right)=\left(2c+13d\right)\left(3a-7b\right)\)
\(\Leftrightarrow6ac-14ad+39bc-91bd=6ac-14bc+39ad-91bd\)
\(\Leftrightarrow-14ad+14bc=39ad-39bc\)
\(\Leftrightarrow-14\left(ad-bc\right)=39\left(ad-bc\right)\)
=>ad-bc=0
=>ad=bc
hay a/b=c/d
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
a, Ta có:\(\frac{a-b}{a+b}=\frac{bk-b}{bk+b}=\frac{b.\left(k-1\right)}{b.\left(k+1\right)}=\frac{k-1}{k+1}\left(1\right)\)
Lại có \(\frac{c-d}{c+d}=\frac{dk-d}{dk+d}=\frac{d.\left(k-1\right)}{d.\left(k+1\right)}=\frac{k-1}{k+1}\left(2\right)\)
Từ (1) và (2) => ĐPCM
b, Ta có \(\frac{a.b}{c.d}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\left(1\right)\)
Lại có \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) => ĐPCM
Đặt \(\left(\frac{a}{b};\frac{c}{b}\right)=\left(x;y\right)\) ta có \(\frac{1}{x}+\frac{1}{y}=2\)
\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}=\frac{\frac{a}{b}+1}{\frac{2a}{b}-1}+\frac{\frac{c}{b}+1}{\frac{2c}{b}-1}=\frac{x+1}{2x-1}+\frac{y+1}{2y-1}\)
\(=1+\frac{3}{2}\left(\frac{1}{2x-1}+\frac{1}{2y-1}\right)=1+\frac{3}{2}.\frac{2x+2y-2}{4xy-2\left(x+y\right)+1}=1+3.\frac{x+y-1}{1}\ge4\)
Do \(\frac{1}{x}+\frac{1}{y}=2\Rightarrow x+y\ge2\)
đpcm
Xí bài 2 :
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
a) Khi đó : \(\frac{a-b}{b}=\frac{bk-b}{b}=\frac{b\left(k-1\right)}{b}=k-1\)
và \(\frac{c-d}{d}=\frac{dk-d}{d}=\frac{d\left(k-1\right)}{d}=k-1\)
Ta có đpcm
b) \(\frac{a\cdot b}{c\cdot d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
\(\Leftrightarrow\frac{bk\cdot b}{dk\cdot d}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}\)
\(\Leftrightarrow\frac{b^2}{d^2}=\frac{b^2\cdot\left(k+1\right)^2}{d^2\cdot\left(k+1\right)^2}\)
\(\Leftrightarrow\frac{b^2}{d^2}=\frac{b^2}{d^2}\)( luôn đúng )
Ta có đpcm
Bài 2 ez nhất,để mình!
a) Ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\Leftrightarrow\frac{a-b}{b}=\frac{c-d}{d}^{\left(đpcm\right)}\)
b) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=kb;c=kd\)
Thay vào suy ra \(VP=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2}{d^2}\) (1)
Mặt khác \(VT=\frac{ab}{cd}=\frac{kb^2}{kd^2}=\frac{b^2}{d^2}\)(2)
Từ (1) và (2) ta có đpcm
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}.\frac{a}{c}=\frac{b}{d}.\frac{b}{d}=\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU TA ĐƯỢC:
\(\frac{a}{c}.\frac{a}{c}=\frac{b}{d}.\frac{b}{d}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(2\right)\)
MẶT KHÁC: \(\frac{a}{c}.\frac{a}{c}=\frac{b}{d}.\frac{b}{d}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\left(1\right)\)
TỪ (1) VÀ (2) TA ĐƯỢC \(\frac{a^2+b^2}{c^2+d^2}==\frac{ab}{cd}\)