Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tỉ lệ thức => a/b=c/d=(a-c)/(b-d) (1)
ta có : a/b=c/d
=> 3a/3b=2c/2d=(3a+2c)/(3b+2d) (2)
Từ(1)(2)=> (a-c)/(b-d)=(3a+2c)/(3b+2d) (điều phải chứng minh)
a, Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)'
Ta có: \(\frac{a}{b}=\frac{bk}{b}=k\left(1\right)\)
\(\frac{3a+2c}{3b+2d}=\frac{3bk+2dk}{3b+2d}=\frac{k\left(3b+2d\right)}{3b+2d}=k\left(2\right)\)
Từ (1) và (2) => đpcm
b, Đặt a/b=c/d=k => a=bk,c=dk
Ta có: \(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(1\right)\)
\(\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\left(2\right)\)
Từ (1) và (2) => đpcm
a) \(\hept{\begin{cases}\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a-3b}{5c-3d}\\\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{3a}{3c}=\frac{2b}{2d}=\frac{3a+2b}{3c+2d}\end{cases}}\)
\(\Rightarrow\frac{5a-3b}{5c-3d}=\frac{3a+2b}{3c+2d}\)
\(\Rightarrow\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+2d}\)
b) Chứng minh tương tự
cần minh trả lời ko
\(\frac{a}{b}=\frac{c}{d}=\frac{3a}{3b}=\frac{2c}{2d}=\frac{3a+2c}{3b+2d}\)