Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
\(\frac{2a^2-3ab+5b^2}{2b^2+3ab}=\frac{2.\left(bk\right)^2-3.bk.b+5.b^2}{2b^2+3.bk.b}\)=\(\frac{2.b^2.k^2-3.k.b^2+5.b^2}{2.b^2+3.b^2.k}=\frac{b^2\left(2.k^2-3.k+5\right)}{b^2\left(2+3.k\right)}=\frac{2.k^2-3.k+5}{2+3.k}\)
\(\frac{2c^2-3cd+5d^2}{2d^2+3cd}=\frac{2.\left(dk\right)^2-3.dk.d+5.d^2}{2.d^2+3.dk.d}\)\(=\frac{2.d^2.k^2-3.d^2.k+5.d^2}{2.d^2+3.d.k.d}\)=\(\frac{d^2\left(2.k^2-3.k+5\right)}{d^2\left(2+3.k\right)}=\frac{2.k^2-3.k+5}{2+3.k}\)
=> bằng nhau
Xét \(a+b+c+d=0\) thì ta có dãy tỷ số là đúng.
\(\Rightarrow a+b=-\left(c+d\right);b+c=-\left(d+a\right);c+d=-\left(a+b\right);d+a=-\left(b+c\right)\)
\(\Rightarrow M=-1-1-1-1=-4\)
Xét \(a+b+c+d\ne0\)thì ta có:
\(\frac{2015a+b+c+d}{a}=\frac{a+2015b+c+d}{b}=\frac{a+b+2015c+d}{c}=\frac{a+b+c+2015d}{d}=\frac{2018\left(a+b+c+d\right)}{a+b+c+d}=2018\)
Lấy 2 cái đầu cộng với nhau ta được:
\(\frac{2016\left(a+b\right)+2\left(c+d\right)}{a+b}=2018\)
\(\Leftrightarrow\frac{c+d}{a+b}=\frac{2018-2016}{2}=1\)
Tương tự ta cũng có:
\(\frac{a+b}{c+d}=;\frac{b+c}{d+a}=1;\frac{d+a}{b+c}=1\)
\(\Rightarrow M=1+1+1+1=4\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{b}=\frac{b-2015c}{c}=\frac{2016c}{a}\)\(=\frac{a+b-2015c+2016c}{b+c+a}=\frac{a+b+c}{a+b+c}=1\).
Suy ra \(\frac{a}{b}=1\Leftrightarrow a=b\).
Để Cm được tỉ lệ thức trên thì ta phải Cm được
(a-2014c)*(b+2015d)=(a+2015c)*(b-2014d)
<=>ab+2015da-2014cb-2015d*2014c=ab-2014da+2015cb-2014d*2015c
<=>2015da-2014cb=-2014da+2015cb
<=>2015da+2014da=2015cb+2014cb
<=>4029da=4029cb
<=>da=cb
Mà a/b=c/d=>ad=cb
=>ta có điều phải chứng minh