Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2: a)
Ta có: 2x=3y (=) \(\frac{x}{3}\)=\(\frac{y}{2}\) (=) \(\frac{x}{21}\)=\(\frac{y}{14}\)
5y=7z (=) \(\frac{z}{5}\)=\(\frac{y}{7}\) (=) \(\frac{z}{10}\)=\(\frac{y}{14}\)
Suy ra \(\frac{x}{21}\)=\(\frac{y}{14}\)=\(\frac{z}{10}\)
ta có \(\frac{x}{21}\)=\(\frac{3x}{63}\)
\(\frac{y}{14}\)= \(\frac{7y}{98}\)
\(\frac{z}{10}\)=\(\frac{5z}{50}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{3x}{63}\)=\(\frac{7y}{98}\)=\(\frac{5z}{50}\)=\(\frac{3x-7y+5z}{63-98+50}\)=\(\frac{30}{15}\)=2
=) \(\frac{3x}{63}\)=2 (=) 3x=126 (=) x=42
\(\frac{7y}{98}\)=2 (=) 7y=196 (=) y=28
\(\frac{5z}{50}\)=2 (=) 5z=100 (=) z=20
Vậy x=42 ; y=28 ; z=20
(a-b/c-d)^2=(a-b)^2/(c-D)^2
=a^2-2ab+b^2/c^2-2cd+d^2
=a^2-2ab+b^2/a^2-2cd+b^2
=-2ab/-2cd=ab/cd
a, \(\frac{a}{b}=\frac{ad}{bd};\frac{c}{d}=\frac{bc}{bd}\)
Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\)
b, Theo câu a ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\Rightarrow ad+ab< bc+ab\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)
Lại có: \(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)
Từ (1) và (2) => đpcm
a, \(\frac{a}{b}=\frac{ad}{bd};\frac{c}{d}=\frac{bc}{bd}\)
Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\)
b, Theo câu a, ta có:
\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\Rightarrow ad+ab< bc+ab\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)(1)
Lại có: \(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)(2)
Từ (1) và (2) => đpcm.
Gọi \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=kb;c=kd\)(1)
Thay (1) vào ta có :
\(\frac{5a+3b}{5a-3b}=\frac{5kb+3b}{5kb-3b}=\frac{b\left(5k-3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\)(2)
\(\frac{5c+3d}{5c-3d}=\frac{5kd+3d}{5kd-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\)(3)
Từ (2) và (3)
\(\Rightarrow\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
\(\RightarrowĐPCM\)
Đặt : \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
\(\Rightarrow\frac{7b^2k^2+3bkb}{11b^2k^2-8b^2}=\frac{7d^2k^2+3dkd}{11d^2k^2-8d^2}\)
\(\Rightarrow\frac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\frac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}\)
\(\Rightarrow\frac{7k^2+3k}{11k^2-8}=\frac{7k^2+3k}{11k^2-8}\left(đpcm\right)\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
=> a=b=c=d=1
=> a20.b11.c2011 = d2042 ( = 1) (dpcm)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
=> a =b=c =d
=> a20.b11.c2011 =d20.d11.d2011 =d20+11+2011 =d2042