\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) và a+b+c\(\ne0\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2019

Áp dụng tính chất dãy tỉ số =nhau :

a/b=b/c=c/a=(a+b+c)/(a+b+c)=1

=> a=b=c =2012

1 tháng 12 2019

Áp dụng tính chất của dãy tỉ số bằng nhau ta đc:

           \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=\frac{1}{1}\)

=> a=b

     b=c

     => a=b=c

mà a= 2012

=>b=c=2012

12 tháng 2 2017

\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b+d}+1=\frac{b}{c+d+a}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)

\(=\frac{a}{a+b+c+d}=\frac{b}{a+b+c+d}=\frac{c}{a+b+c+d}=\frac{d}{a+b+c+d}\)

\(\Rightarrow a=b=c=d\) Thay vào A ta được :

\(A=\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}=1+1+1+1=4\)

13 tháng 7 2018

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow}a=b=c=2012\)

13 tháng 7 2018

Theo t/c dãy tỉ số bằng nhau :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow a=b\)

\(b=c\)

\(c=a\)

\(\Rightarrow a=b=c\).Mà \(a=2012\)

\(\Rightarrow a=b=c=2012\)

19 tháng 10 2017

Áp dụng tính chất dãy tỉ số bằng nhau: 
\(\frac{a}{b}=\frac{b-2015c}{c}=\frac{2016c}{a}\)\(=\frac{a+b-2015c+2016c}{b+c+a}=\frac{a+b+c}{a+b+c}=1\).
Suy ra \(\frac{a}{b}=1\Leftrightarrow a=b\).

19 tháng 10 2017

thanks bui thi van nha

18 tháng 10 2017

Áp dụng tính chất của dãy tỉ số bằng nhau có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> a/b = 1 => a = b

b/c = 1 => b = c

=> a=b=c

=> \(M=\frac{a^{2012}.b^3.c}{b^{2016}}=\frac{b^{2012}.b^3.b}{b^{2016}}=\frac{b^{2016}}{b^{2016}}=1\)

13 tháng 8 2017

ta có : a/b=b/c=c/a

=> a+b+c/b+c+a=1

=> a=b=c

Mà a=2005

=> b=c=2005

Vậy b=2005 ; c=2005

13 tháng 8 2017

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow a=b=c=2005\)

6 tháng 3 2019

Đặt: \(\frac{a}{2013}=\frac{b}{2012}=\frac{c}{2011}=k\Rightarrow\hept{\begin{cases}a=2013k\\b=2012k\\c=2011k\end{cases}}\)

\(P=\frac{\left(a-c\right)^4}{\left(a-b\right)^2\left(b-c\right)^2}=\frac{\left(2013k-2011k\right)^4}{\left(2013k-2012k\right)^2\left(2012k-2011k\right)^2}=\frac{16k^4}{k^4}=16\)

17 tháng 10 2016

Giup với nào vui