\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)

c...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 4 2019

\(abc\ne0\)

\(abc\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)=abc\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\)

\(\Leftrightarrow a^2c+ab^2+bc^2=b^2c+ac^2+a^2b\)

\(\Leftrightarrow a^2c-b^2c+ab^2-a^2b+bc^2-ac^2=0\)

\(\Leftrightarrow c\left(a-b\right)\left(a+b\right)-ab\left(a-b\right)-c^2\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(ac+bc-ab-c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(c\left(a-c\right)-b\left(a-c\right)\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(c-b\right)\left(a-c\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=c\\b=c\end{matrix}\right.\) (đpcm)

30 tháng 5 2015

kết quả sẽ ra là

(a-b)(a-c)(b-c)=0

30 tháng 5 2015

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)

\(\frac{a^2c}{abc}+\frac{b^2a}{abc}+\frac{c^2a}{abc}=\frac{b^2c}{abc}+\frac{c^2a}{abc}+\frac{a^2b}{abc}\)

\(=>a^2c+b^2a+c^2a=b^2c+c^2a+a^2b\)

Vì \(c^2a=c^2a\)=> \(a^2c+b^2a=b^2c+a^2b\)

=>đpcm, hình như mình giải thiếu điều kiện thì phải 

5 tháng 12 2020

xin lỗi, viết nhầm, a+b+c=1 chứ ko phải bằng 0 nha

DD
5 tháng 12 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow\frac{ab+bc+ca}{abc}=1\Rightarrow ab+bc+ca=abc\)\

Ta có: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

                                                                 \(=ab+bc+ca-abc=0\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

Từ đây ta suy ra đpcm. 

5 tháng 12 2017

 a/b+b/c+c/a=b/a+c/b+a/c 
<=> a/b-b/a+b/c-c/b+c/a-a/c=0 
<=> a^2c-c^2a+c^2b-b^2c+b^2a-a^2b=0 
<=> ac(a-c)+bc(c-b)+ab(b-a)=0 
<=> ac(a-c)+bc(c-a+a-b)+ab(b-a)=0 
<=> ac(a-c)+bc(c-a)+bc(a-b)+ab(b-a)=0 
<=> (a-c)(a-b)c+(a-b)(c-a)b=0 
<=> (a-b)(c-a)(b-c)=0 
<=> a=b hay c=a hay b=c 
Vậy trong ba số a,b,c tồn tại 2 số =nhau

29 tháng 1 2021

Ta có \(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}=\frac{1}{a-b-c}\)

=> \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b-c}+\frac{1}{c}\)

=> \(\frac{b-a}{ab}=\frac{a-b}{\left(a-b-c\right)c}\)

Khi b - a = 0

=> (b - a)(a - c)(b + c) = 0 (1)

Khi b - a \(\ne0\)

=> ab = -(a - b - c).c

=> ab = -ac + bc + c2 

=> ab + ac - bc - c2 = 0

=> a(b + c) - c(b + c) = 0

=> (a - c)(b + c) = 0

=> (b - a)(a - c)(b + c) = 0 (2)

Từ (1)(2) => (b - a)(a - c)(b + c) = 0

=> b - a = 0 hoặc a - c = 0 hoặc b + c = 0

=> a = b hoặc a = c hoặc b = -c

Vậy tồn tại 2 số bằng nhau hoặc đối nhau

AH
Akai Haruma
Giáo viên
23 tháng 11 2017

Lời giải:

Ta có \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)

\(\Leftrightarrow \frac{ab^2+bc^2+ca^2}{abc}=\frac{a^2b+b^2c+c^2a}{abc}\)

\(\Leftrightarrow ab^2+bc^2+ca^2=a^2b+b^2c+c^2a\)

\(\Leftrightarrow ab^2+bc^2+ca^2-a^2b-b^2c-c^2a=0\)

\(\Leftrightarrow ab(b-a)+bc(c-b)+ac(a-c)=0\)

\(\Leftrightarrow ab(b-a)-bc[(b-a)+(a-c)]+ac(a-c)=0\)

\(\Leftrightarrow (b-a)(ab-bc)+(a-c)(ac-bc)=0\)

\(\Leftrightarrow b(b-a)(a-c)-c(a-c)(b-a)=0\)

\(\Leftrightarrow (b-a)(a-c)(b-c)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}b=a\\a=c\\b=c\end{matrix}\right.\)

Do đó luôn tồn tại hai số bằng nhau (đpcm)

23 tháng 11 2017

\(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=\dfrac{b}{a}+\dfrac{a}{c}+\dfrac{c}{b}\)

\(\Rightarrow\dfrac{a^2c}{abc}+\dfrac{b^2a}{abc}+\dfrac{c^2b}{abc}=\dfrac{b^2c}{abc}+\dfrac{a^2b}{abc}+\dfrac{c^2a}{abc}\)

\(\Rightarrow\dfrac{a^2c+b^2a+c^2b}{abc}=\dfrac{b^2c+a^2b+c^2a}{abc}\)

\(\Rightarrow a^2c+b^2a+c^2b=b^2c+a^2b+c^2a\)

\(\Rightarrow a^2c+b^2a+c^2b-b^2c-a^2b-c^2a=0\)

\(\Rightarrow\left(a^2c-c^2a\right)+\left(b^2a-a^2b\right)+\left(c^2b-b^2c\right)=0\)

\(\Rightarrow ac\left(a-c\right)+ab\left(b-a\right)+bc\left(c-b\right)=0\)

\(\Rightarrow ac\left(a-c\right)+ab\left(b-a\right)+bc\left(c-b+a-a\right)=0\)

\(\Rightarrow ac\left(a-c\right)+ab\left(b-a\right)+bc\left(c-a\right)+bc\left(a-b\right)\)

\(\Rightarrow c\left(a-c\right)\left(a-b\right)+b\left(a-b\right)\left(c-a\right)=0\)

\(\Rightarrow c\left(a-c\right)\left(a-b\right)-b\left(a-b\right)\left(a-c\right)=0\)

\(\Rightarrow\left(c-b\right)\left(a-c\right)\left(a-b\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}c=b\\a=c\\a=b\end{matrix}\right.\)(Tồn tại ít nhất 2 số bằng nhau)

4 tháng 9 2018

ta có: \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Rightarrow a+b+c=\frac{ba+ac+ab}{abc}\)

mà abc = 1

\(\Rightarrow a+b+c=ba+ac+ab\)

Lại có: (a-1).(b-1).(c-1)

 = (ab - a - b + 1) . ( c-1)

= abc - ac - bc + c - ab + a + b - 1

= ( abc - 1) +( a+ b + c ) - ( ac + bc + ab)

= (  1 - 1) + ( a + b + c)  - ( a + b + c)

= 0 

=> (a-1).(b-1).(c-1) = 0

=> trong 3 số a;b;c tồn tại một số bằng 1

8 tháng 9 2019

Cho 4 số a,b,c,d khác 0 thỏa mãn abcd=1 và a+b+c+d=1/a+1/b+1/c+/1d. chứng minh rằng tồn tại tích hai số trong 4 số bằng 

14 tháng 7 2018

Ta có :

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{b}{a}+\frac{a}{c}+\frac{c}{b}\)

\(\Rightarrow a^2c+ab^2+bc^2\)

\(=b^2c+a^2b+ac^2\)

\(\Rightarrow a^2\left(c-b\right)-a\left(c^2-b^2\right)+bc\left(c-b\right)=0\)

\(\Rightarrow\left(c-b\right)\left(a^2-ac-ab+bc\right)=0\)

\(\Rightarrow\left(c-b\right)\left(a-b\right)\left(a-c\right)=0\)

Theo phân tích trên ta được tồn tại các thừa số \(\hept{\begin{cases}c-b\\a-c\\a-b\end{cases}}=0\)

Vậy trong ba số a , b , c tồn tại 2 số giống nhau  ( đpcm)

NM
3 tháng 9 2021

ta có :

\(\frac{a+b-c}{ab}-\frac{b+c-a}{bc}-\frac{c+a-b}{ca}=0\Leftrightarrow ac+bc-c^2-\left(ab+ac-a^2\right)-\left(bc+ab-b^2\right)=0\)

\(\Leftrightarrow a^2-2ab+b^2-c^2=0\Leftrightarrow\left(a-b\right)^2-c^2=0\)

\(\Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)=0\Leftrightarrow\orbr{\begin{cases}\frac{a-b+c}{ca}=0\\\frac{b+c-a}{bc}=0\end{cases}}\)

Vậy ta có đpcm

3 tháng 9 2021

\(\frac{a+b-c}{ab}-\frac{b+c-a}{bc}-\frac{c+a-b}{ca}=0\)

=> \(\frac{ca+cb-c^2-ab-ac+a^2-bc-ab+b^2}{abc}=0\)

=> a2 + b2 - 2ab - c2 = 0

=> (a - b)2 - c2 = 0

<=> (a - b + c)(a - b - c) = 0

<=> \(\orbr{\begin{cases}a-b+c=0\\a-b-c=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a+c=b\\a=b+c\end{cases}}\)

Khi a + c = b => \(\frac{c+a-b}{ca}=\frac{b-b}{ca}=0\)

Khi a = b + c => \(\frac{b+c-a}{bc}=\frac{a-a}{bc}=0\)

=> đpcm