Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : a/ab+a+1 = a/ab+a+abc = 1/b+1+bc = 1/bc+b+1
c/ca+c+1 = bc/abc+bc+b = b/1+bc+b = b/bc+b+1
=> A = 1+bc+b/bc+b+1 = 1
Tk mk nha
BÀI 1:
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{a\left(bc+b+1\right)}+\frac{abc}{ab\left(ca+c+1\right)}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a} +\frac{abc}{a^2bc+abc+ab}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}\) (thay abc = 1)
\(=\frac{a+ab+1}{a+ab+1}=1\)
Ta có; \(\frac{a+b+c}{c}=\frac{a+b}{c}+1;\frac{b+c-a}{a}=\frac{b+c}{a}-1;\frac{c+a-b}{b}=\frac{c+a}{b}-1\)\(\Rightarrow\frac{a+b}{c}+1=\frac{b+c}{a}-1=\frac{c+a}{b}-1\)
\(\Rightarrow\frac{a+b-2c}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
\(\Rightarrow\frac{a}{c}+\frac{b}{c}-2=\frac{c}{b}+\frac{a}{b}=\frac{b}{a}+\frac{c}{a}\)
Ta có; a+b+cc =a+bc +1;b+c−aa =b+ca −1;c+a−bb =c+ab −1⇒a+bc +1=b+ca −1=c+ab −1
⇒a+b−2cc =b+ca =c+ab
⇒ac +bc −2=cb +ab =ba +ca
Ta có : \(P=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(\Rightarrow P+3=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1\)
\(\Rightarrow P+3=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)
\(\Rightarrow P+3=\left(a+b+c\right).\frac{1}{b+c}+\left(a+b+c\right).\frac{1}{c+a}+\left(a+b+c\right).\frac{1}{a+b}\)
\(\Rightarrow P+3=\left(a+b+c\right).\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
\(\Rightarrow P+3=2019.10\)
\(\Rightarrow P+3=20190\)
\(\Rightarrow P=20190-3\)
\(\Rightarrow P=20187\)
Vậy P = 20187
Ta có :
\(A=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)-1-1-1\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}-3\)
\(=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)-3\)
Thay \(a+b+c=2001\)và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{10};\)có :
\(A=2001.\frac{1}{10}-3\)
\(=200,1-3\)
\(=197,1\)
Vậy \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=197,1\)
Từ a+b+c=2010
\(\Rightarrow\)a= 2010-(b+c)
\(\Rightarrow\)b= 2010-(c+a)
\(\Rightarrow\)c= 2010-(a+b)
Thay vào A, ta được:
A=\(\frac{2010-\left(b+c\right)}{b+c}\)+ \(\frac{2010-\left(c+a\right)}{c+a}\) + \(\frac{2010-\left(a+b\right)}{a+b}\)
A= \(\frac{2010}{b+c}\)+ \(\frac{2010}{c+a}\)+\(\frac{2010}{a+b}\)- 3
A= 2010( \(\frac{1}{b+c}\)+\(\frac{1}{c+a}\)+\(\frac{1}{a+b}\) ) -3
A= 2010. \(\frac{1}{10}\)-3
A=201-3
A= 198
Vậy A=198
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
=> \(\frac{2}{c}=\frac{1}{a}+\frac{1}{b}\)
=> \(\frac{2}{c}=\frac{a+b}{ab}\)
=> 2ab = ac + bc
=> ac + bc - 2ab = 0
=> (ac - ab) + (bc - ab) = 0
=> a(c - b) + b(c - a) = 0
=> a(c - b) = -b(c - a)
=> a(c - b) = b(a - c)
=> \(\frac{a}{b}=\frac{a-c}{c-b}\) (đpcm)
\(\frac{a+b}{c}=\frac{a+c}{b}=\frac{b+c}{a}=\frac{a+b+a+c+b+c}{a+b+c}=2\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\a+c=2b\\b+c=2a\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
- Nếu \(a+b+c=0\)
\(\Rightarrow M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(-c\right)\left(-a\right)\left(-b\right)}{abc}=-1\)
- Nếu \(a=b=c\Rightarrow M=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)