K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2015

\(\frac{a+b}{a+c}=\frac{a-b}{a-c}=\frac{a+b+a-b}{a+c+a-c}=1\Rightarrow a+b=a+c\Rightarrow b=c\)

\(\text{Suy ra: }A=\frac{10b^2+9bc+c^2}{2b^2+bc+2c^2}=\frac{10b^2+9b^2+b^2}{2b^2+b^2+2b^2}=\frac{20b^2}{5b^2}=4\)

thể hiện đấy

16 tháng 5 2016

1) \(D=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+....+\frac{10}{1400}\)

\(D=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+.....+\frac{5}{700}\)

\(D=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+......+\frac{5}{25.28}\)

\(D=\frac{5}{3}.\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+.....+\frac{3}{25.28}\right)\)

\(D=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+....+\frac{1}{25}-\frac{1}{28}\right)\)

\(D=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{28}\right)=\frac{5}{3}.\frac{6}{28}=\frac{5}{14}\)

\(E=\frac{1}{1+2}+\frac{1}{1+2+3}+.......+\frac{1}{1+2+3+....+24}\)

Ta có: \(1+2=\)\(\frac{2.\left(2+1\right)}{2}=3\);\(1+2+3=\frac{3.\left(3+1\right)}{2}=6\);\(1+2+3+...+24=\frac{24.\left(24+1\right)}{2}=300\)

\(E=\frac{1}{3}+\frac{1}{6}+....+\frac{1}{300}\)

=>\(\frac{1}{2}E=\frac{1}{6}+\frac{1}{12}+.....+\frac{1}{600}=\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{24.25}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{24}-\frac{1}{25}=\frac{1}{2}-\frac{1}{25}=\frac{23}{50}\)

=>\(E=\frac{46}{50}\)

Vậy \(\frac{D}{E}=\frac{5}{14}:\frac{46}{50}=\frac{250}{644}=\frac{125}{322}\)

16 tháng 5 2016

2) Theo t/c dãy tỉ số=nhau:

\(\frac{a+b}{a+c}=\frac{a-b}{a-c}=\frac{a+b-\left(a-b\right)}{a+c-\left(a-c\right)}=\frac{a+b-a+b}{a+c-a+c}=\frac{2b}{2c}=1\)

=>b=c

do đó \(A=\frac{10b^2+9bc+c^2}{2b^2+bc+2c^2}=\frac{10b^2+9b^2+b^2}{2b^2+b^2+2b^2}=\frac{\left(10+9+1\right).b^2}{\left(2+1+2\right).b^2}=4\)

26 tháng 2 2017

\(\frac{a+b}{a+c}=\frac{a-b}{a-c}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(a+c\right)+\left(a-c\right)}=\frac{2a}{2a}=1\)

\(\Rightarrow a+b=a+c\Rightarrow b=c\)Thay vao biểu thức trên đề bài ta được :

\(\frac{10b^2+9bc+c^2}{2b^2+bc+2c^2}=\frac{10b^2+9b^2+b^2}{2b^2+b^2+2b^2}=\frac{20b^2}{5b^2}=\frac{20}{5}=4\)

4 tháng 8 2017

Ta có :

\(\frac{a+b}{a+c}=\frac{a-b}{a-c}=\frac{a+b-a+b}{a+c-a+c}=\frac{2b}{2c}=\frac{b}{c}\) (1)

\(\frac{a+b}{a+c}=\frac{a-b}{a-c}=\frac{a+b+a-b}{a+c+a-c}=\frac{2a}{2a}=1\) (2)

Từ (1) ; (2) \(\Rightarrow\frac{b}{c}=1\Rightarrow b=c\)

\(\Rightarrow\frac{10b^2+9bc+c^2}{2b^2+bc+2c^2}=\frac{10b^2+9b^2+b^2}{2b^2+b^2+2b^2}=\frac{20b^2}{5b^2}=4\)

12 tháng 10 2018

\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)

\(\Leftrightarrow\)\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

\(\Leftrightarrow\)\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

+) Xét \(a+b+c+d=0\)

Suy ra : 

\(a+b=-\left(c+d\right)\)

\(b+c=-\left(d+a\right)\)

\(c+a=-\left(b+d\right)\)

\(d+a=-\left(b+c\right)\)

Do đó : \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{c+b}\)

\(M=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(d+a\right)}{d+a}+\frac{-\left(a+b\right)}{a+b}+\frac{-\left(b+c\right)}{b+c}\)

\(M=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)\)

\(M=-4\)

+) Xét \(a+b+c+d\ne0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}=4\)

Do đó : 

\(\frac{a+b+c+d}{a}=4\)\(\Leftrightarrow\)\(a+b+c+d=4a\) \(\left(1\right)\)

\(\frac{a+b+c+d}{b}=4\)\(\Leftrightarrow\)\(a+b+c+d=4b\) \(\left(2\right)\)

\(\frac{a+b+c+d}{c}=4\)\(\Leftrightarrow\)\(a+b+c+d=4c\) \(\left(3\right)\)

\(\frac{a+b+c+d}{d}=4\)\(\Leftrightarrow\)\(a+b+c+d=4d\) \(\left(4\right)\)

Từ (1), (2), (3) và (4) suy ra \(4a=4b=4c=4d\) \(\left(=a+b+c+d\right)\)

\(\Leftrightarrow\)\(a=b=c=d\)

\(\Rightarrow\)\(M=\frac{a+a}{a+a}+\frac{b+b}{b+b}+\frac{c+c}{c+c}+\frac{d+d}{d+d}\)

\(\Rightarrow\)\(M=1+1+1+1=4\)

Vậy \(M=-4\) hoặc \(M=4\)

Chúc bạn học tốt ~ 

12 tháng 10 2018

Ta có : 

\(2a+2b+2c=by+cz+ax+cz+ax+by\)

\(\Leftrightarrow\)\(2\left(a+b+c\right)=2\left(ax+by+cz\right)\)

\(\Leftrightarrow\)\(a+b+c=ax+by+cz\)

+) \(a+b+c=ax+\left(by+cz\right)=ax+2a=a\left(x+2\right)\)

\(\Rightarrow\)\(\frac{1}{x+2}=\frac{a}{a+b+c}\) \(\left(1\right)\)

+) \(a+b+c=by+\left(ax+cz\right)=by+2b=b\left(y+2\right)\)

\(\Rightarrow\)\(\frac{1}{y+2}=\frac{b}{a+b+c}\) \(\left(2\right)\)

+) \(a+b+c=cz+\left(ax+by\right)=cz+2c=c\left(z+2\right)\)

\(\Rightarrow\)\(\frac{1}{z+2}=\frac{c}{a+b+c}\) \(\left(3\right)\)

Từ (1), (2) và (3) suy ra \(M=\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}\)

\(M=\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)

\(M=\frac{a+b+c}{a+b+c}=1\)

Vậy \(M=1\)

Chúc bạn học tốt ~ 

18 tháng 3 2020

a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\)\(b=3k\)\(c=5k\)

Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)

b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)

\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)

\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)

\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)

\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)

Do đó:  +)  \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)

+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)

+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)