Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay \(y=1\) vào (1) ta được:
\(x=1+3\)
\(\Rightarrow x=4.\)
Vậy \(\left(x;y\right)=\left(4;1\right).\)
Chúc bạn học tốt!
c) \(4x=7y\Rightarrow\frac{x}{7}=\frac{y}{4}\Rightarrow\frac{x^2}{49}=\frac{y^2}{16}=\frac{x^2+y^2}{49+16}=\frac{260}{65}=4\)
\(\Rightarrow\orbr{\begin{cases}x^2=4.49=14^2\\y^2=4.16=8^2\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=14\\y=8\end{cases}}\)
d) \(\frac{x}{2}=\frac{y}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}\Rightarrow\frac{x^2.y^2}{4.16}=\frac{x^4}{16}=\frac{4}{64}=\frac{1}{16}\Rightarrow x=1;y=2\)
a) Ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\) và \(5x-y+3z=-16\)
\(\Rightarrow\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{-16}{4}=-4\)
\(\Rightarrow\frac{5x}{15}=-4\Rightarrow5x=\left(-4\right).15=-60\Rightarrow x=60:5=12\)
\(\Rightarrow\frac{y}{5}=-4\Rightarrow y=\left(-4\right).5=-20\)
\(\Rightarrow\frac{3z}{-6}=-4\Rightarrow3z=\left(-4\right).\left(-6\right)=24\Rightarrow y=24:3=8\)
Vậy ___________________________________________________________
\(\frac{4^x}{2^{x+y}}=8\)
\(\frac{2^{2x}}{2^x.2^y}=8\)
\(\frac{2^x}{2^y}=8\)
\(2^x=2^3.2^y\)
\(2^x=2^{3+y}\)
\(\Rightarrow x=3+y\)
\(\frac{9^{x+y}}{3^{5y}}=243\)
\(\frac{3^{2x+2y}}{3^{5y}}=3^5\)
\(\frac{3^{2x}.3^{2y}}{3^{5y}}=3^5\)
\(\frac{3^{2x}}{3^{3y}}=3^5\)
\(3^{2x}=3^5.3^{3y}\)
\(3^{2x}=3^{5+3y}\)
\(\Rightarrow2x=3y+5\)
\(\hept{\begin{cases}2x-3y=5\\x=3+y\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(3+y\right)-3y=5\\x=3+y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6+2y-3y=5\\x=3+y\end{cases}}\Leftrightarrow\hept{\begin{cases}-y=-1\\x=3+y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1\\x=4\end{cases}}\)
vậy...
\(\frac{4^x}{2^{x+y}}=8\Leftrightarrow2^{2x}=2^{x+y+3}\Leftrightarrow x=y+3\)
\(9^{x+y}=243.3^{5y}\Leftrightarrow3^{2x+2y}=3^{5y+5}\Leftrightarrow2x=3y+5\)
\(\left(x,y\right)=\left(-1;2\right)\)
b) 4x = 3y \(\Rightarrow\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}\)
Và x2 + y2 = 100
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
Ta có:
\(\frac{x^2}{9}=4\Rightarrow x^2=4.9=36\Rightarrow x=6;x=-6\)
\(\frac{y^2}{16}=4\Rightarrow y^2=16.9=144\Rightarrow x=12;x=-12\)
Vậy ta có các cặp số x, y sau:
x = 6; y = 12
hoặc x = 6; y = -12
hoặc x = -6; y = 12
hoặc x = -6; y = -12
d) \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x^2}{2}=\frac{xy}{3}\)
Mà xy = 6
\(\Rightarrow\frac{x^2}{2}=\frac{xy}{3}=\frac{6}{3}=2\)
Ta có:
\(\frac{x^2}{2}=2\Rightarrow x^2=2.2=4\Rightarrow x=2;x=-2\)
Với x = 2, ta có:
\(\frac{2y}{3}=2\Rightarrow y=\frac{2.3}{2}=\frac{6}{2}=3\)
Với x = -2, ta có:
\(\frac{-2y}{3}=2\Rightarrow y=\frac{2.3}{-2}=\frac{-6}{2}=-3\)
Vậy có các cặp giá trị x, y sau:
x = 2; y = 3
Hoặc x = -2; y = -3
a. \(\frac{x}{2}=\frac{y}{3}=k\Rightarrow x=2k;y=3k\)
\(xy=54\Rightarrow2k3k=54\Rightarrow6k^2=54\Rightarrow k^2=9\Rightarrow k\in\left\{3;-3\right\}\)
\(k=3\Rightarrow x=6;y=9\)
\(k=-3\Rightarrow x=-6;y=-9\)
b.\(\frac{x}{5}=\frac{y}{3}=k\Rightarrow x=5k;y=3k\)
\(\Rightarrow\left(5k\right)^2-\left(3k\right)^2=4\Rightarrow25k^2-9k^2=4\)
\(\Rightarrow16k^2=4\Rightarrow k^2=\frac{1}{4}\Rightarrow k\in\left\{\frac{1}{2};-\frac{1}{2}\right\}\)
\(k=\frac{1}{2}\Rightarrow x=\frac{5}{2};y=\frac{3}{2}\)
\(k=-\frac{1}{2}\Rightarrow x=\frac{-5}{2};y=\frac{-3}{2}\)
c.\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{2}.\frac{1}{5}=\frac{y}{3}.\frac{1}{5}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}.\frac{1}{3}=\frac{z}{7}.\frac{1}{3}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)
\(\Rightarrow x=20,y=30,z=42\)
d.\(\frac{x^2}{9}=\frac{y^2}{16}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
\(\Rightarrow x^2=36\Rightarrow x\in\left\{6;-6\right\};y^2=64\Rightarrow y\in\left\{8;-8\right\}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x-1}{2}\) = \(\frac{y-2}{3}\) = \(\frac{z-3}{4}\) = \(\frac{2x-2}{4}\) = \(\frac{3y-6}{9}\) = \(\frac{z-3}{4}\)
= \(\frac{2x-2+3y-6-\left(z-3\right)}{4+9-4}\) = \(\frac{2x-2+3y-6-z+3}{9}\) = \(\frac{50-5}{9}\) = \(\frac{45}{9}\) = 5
Ta có: \(\frac{x-1}{2}\) = 5 => x - 1 = 10 => x = 11
\(\frac{y-2}{3}\) = 5 => y - 2 = 15 => y = 17
\(\frac{z-3}{4}\) = 5 => z - 3 = 20 => z = 23
Vậy x = 11 ; y = 17 ; z = 23
a) \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)
\(\Rightarrow\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
\(\Rightarrow\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}\)
Áp dụng tính chất dãy tỉ sô bằng nhau , ta có :
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
\(\Rightarrow x^2=1;y^2=4;z^2=9\)
=> x = 1 hoặc -1
y = 2 hoặc -2
z = 3 hoặc -3