Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ac\right)-abc=0\)
\(\Leftrightarrow a^2b+abc+a^2c+b^2a+b^2c+abc+c^2b+c^2a=0\)
\(\Leftrightarrow ab\left(a+b\right)+ac\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(ab+ac+bc+c^2\right)\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
So ez
....
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=4\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)
=>\(2+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)
=>\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)
=>\(\frac{c+a+b}{abc}=1\)
=> a+b+c=abc (đpcm)
Từ \(\left(1\right)\) suy ra : \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)
Do \(\left(2\right)\) nên \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1,\) suy ra \(\frac{a+b+c}{abc}=1\\.\)
Do đó \(a+b+c=abc\)
\(\Rightarrow\frac{a+b+c}{abc}=\frac{1}{9}\Leftrightarrow\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=\frac{2}{9}\)
Lại có \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=1\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=1\)
Vậy 1/a^2+1/b^2+1/c^2=1-2/9=7/9 ( Sê đài )
(1/a+1/b+1/c)=2
=>(1/a+1/b+1/c)2=22=4
=>1/a2+1/b2+1/c2+2(1/ab+1/bc+1/ca)=4
=>2(1/ab+1/bc+1/ca)=4-(1/a2+1/b2+1/c2)=4-2=2
=>1/ab+/bc+1/ca=1
=>(a+b+c)/abc=1
=>a+b+c=abc
CO BAN NAO BIET THANG NAO TEN SUPER SAYGIAN GON KHONG NEU BIET THI NOI CHO MINH BIET NHA
Ta có :
\(\left(a+b+c\right)^2=a^2+b^2+c^2\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=a^2+b^2+c^2\)
\(\Rightarrow2\left(ab+bc+ca\right)=0\)
\(\Rightarrow ab+bc+ca=0\)
\(\Rightarrow\frac{ab+bc+ca}{abc}=0\)
\(\Rightarrow\frac{ab}{abc}+\frac{bc}{abc}+\frac{ca}{abc}=0\)
\(\Rightarrow\frac{1}{c}+\frac{1}{a}+\frac{1}{b}=0\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)
\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{ab\left(\frac{1}{a}+\frac{1}{b}\right)}=-\frac{1}{c^3}\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{3}{ab\left(-\frac{1}{c}\right)}=0\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}-\frac{3}{abc}=0\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\) (ĐPCM)
Bài 2 :
Ta có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\cdot\frac{a+b+c}{abc}=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\cdot1=4\)
( Do \(a+b+c=abc\) )
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\) (đpcm)
P/s : Cho hỏi bài 1 có a,b,c > 0 không ?
Khuyến mãi thêm bài 1 :))
Áp dụng BĐT AM-GM ta có :
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}\cdot\frac{b^2}{c^2}}=\frac{2a}{c}\) (1)
Tương tự ta có :
\(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\)(2), \(\frac{c^2}{a^2}+\frac{a^2}{b^2}\ge\frac{2c}{b}\) (3)
Cộng các vế của BĐT (1) (2) và (3) và chia 2 ta có :
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Sửa lại đề nha: abc = 1
\(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\le1\)
\(\Leftrightarrow\left(a+b+1\right)\left(b+c+1\right)+\left(b+c+1\right)\left(c+a+1\right)\)\(+\left(c+a+1\right)\left(a+b+1\right)\)
\(\le\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)+a+b+b+c+1\)\(+\left(b+c\right)\left(c+a\right)+b+c+c+a+1\)
\(+\left(c+a\right)\left(a+b\right)+c+a+a+b+1\)
\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)+\left(a+b\right)\left(b+c\right)+\left(b+c\right)\left(c+a\right)\) \(+\left(c+a\right)\left(a+b\right)+a+b+b+c+c+a+1\)
\(\Leftrightarrow2+2\left(a+b+c\right)\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow2+2\left(a+b+c\right)\le\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(\Leftrightarrow3\le\left(a+b+c\right)\left(ab+bc+ca-2\right)\)
Áp dụng bất đẳng thức Cauchy cho 3 số không âm:\(\left(a+b+c\right)\left(ab+bc+ca-2\right)\ge3.\sqrt[3]{a.b.c}.\left[3.\sqrt[3]{ab.bc.ca}-2\right]=3\)
\(\Rightarrow\)đpcm
Dấu đẳng thức xảy ra \(\Leftrightarrow a=b=c=1\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=1\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=1\)
\(\Leftrightarrow2+2.\frac{a+b+c}{abc}=1\Leftrightarrow\frac{a+b+c}{abc}=-\frac{1}{2}\Leftrightarrow2\left(a+b+c\right)=-abc\)
có chép nhầm đề không ý nhỉ?
ak hình như mk chép sai đề \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
bn có thể giúp mk đc ko Trà My