\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

Tính giá trị biểu thức

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2015

Với \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\) 

Chứng minh : với \(a+b+c=0\) thì \(a=-\left(b+c\right)\Leftrightarrow a^3=-\left(b+c\right)^3\)

\(\Leftrightarrow a^3=-\left(b^3+c^3+3b^2c+3bc^2\right)\Leftrightarrow a^3+b^3+c^3=-\left(b^3+c^3+3b^2c+3bc^2\right)+b^3+c^3\)

\(\Leftrightarrow a^3+b^3+c^3=-3bc\left(b+c\right)=-3bc\left(-a\right)=3abc\)vì \(b+c=-a\) =>đpcm

Vì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\)\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

Vậy \(P=\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ca}{b^2}=abc\left(\frac{1}{c^3}+\frac{1}{a^3}+\frac{1}{b^3}\right)=abc\frac{3}{abc}=3\)

**** mình nha 

\(\left(\frac{1}{a}+\frac{1}{b}\right)^3=-\frac{1}{c^3}\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-3.\frac{1}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{3}{abc}\)

\(P=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc.\frac{3}{abc}=3\)

24 tháng 7 2020

trước hết ta chứng minh: nếu x+y+z=0 thì x3+y3+z3=3xyz

thật vậy, vì x+y+z=0 => z=-(x+y)

=> z3=-[x3+y3+3xy(x+y)]

=> x3+y3+z3=-3xy(x+y)=-3xy(-z)

=> x3+y3+z3=3xyz

áp dụng vào bài đã cho, ta suy ra: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{3}{abc}\)

do đó \(P=\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ca}{b^2}=\frac{abc}{c^3}+\frac{bca}{a^3}+\frac{cab}{b^3}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc\cdot\frac{3}{abc}=3\)

vậy P=3

13 tháng 7 2019

Cần chứng minh: \(\sqrt{a^2-ab+b^2}\ge\frac{1}{2}\left(a+b\right)\)

Thật vậy: \(\sqrt{a^2-ab+b^2}\ge\frac{1}{2}\left(a+b\right)^2\Leftrightarrow4\left(a^2-ab+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow4a^2-4ab+4b^2-a^2-b^2-2ab\ge0\Leftrightarrow3\left(a^2+b^2-2ab\right)\ge0\Leftrightarrow3\left(a-b\right)^2\ge0\)(đúng)

Áp dụng:\(P=\frac{1}{\sqrt{a^2-ab+b^2}}+\frac{1}{\sqrt{b^2-bc+c^2}}+\frac{1}{\sqrt{c^2-ac+a^2}}\)

\(\le\frac{1}{\frac{1}{2}\left(a+b\right)}+\frac{1}{\frac{1}{2}\left(b+c\right)}+\frac{1}{\frac{1}{2}\left(c+a\right)}=2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)=3\)

Dấu "=" xảy ra khi: \(a=b=c=1\)

23 tháng 1 2017

i don't no TT

mình chưa học tới 

18 tháng 7 2016

18. Ta có : \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow\frac{ayz+bxz+cxy}{xyz}=0\Rightarrow ayz+bxz+cxy=0\)

\(\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2xyz\left(\frac{1}{abz}+\frac{1}{xbc}+\frac{1}{acy}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2xyz\left(\frac{ayz+bxz+cxy}{abcxyz}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)

18 tháng 7 2016

19. Nhân cả hai vế của đẳng thức giả thiết với \(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\)được 

\(\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\right)=0\)

\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a+b}{\left(b-c\right)\left(c-a\right)}+\frac{b+c}{\left(c-a\right)\left(a-b\right)}+\frac{c+a}{\left(a-b\right)\left(b-c\right)}=0\)

Ta có ;

 \(\frac{a+b}{\left(b-c\right)\left(c-a\right)}+\frac{b+c}{\left(c-a\right)\left(a-b\right)}+\frac{c+a}{\left(a-b\right)\left(b-c\right)}=\frac{\left(a+b\right)\left(a-b\right)+\left(b+c\right)\left(b-c\right)+\left(c+a\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)\(=\frac{a^2-b^2+b^2-c^2+c^2-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

\(\Rightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)

1 tháng 1 2020

Ta có : \(ab+bc+ca=2abc\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y+z=2\\P=\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^3}+\frac{z^3}{\left(2-z\right)^2}\end{cases}}\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge3\sqrt[3]{\frac{x^3}{64}}=\frac{3x}{4}\)

Tương tự ta có :

\(\hept{\begin{cases}\frac{y^3}{\left(2-y\right)^2}+\frac{2-y}{8}+\frac{2-y}{8}\ge\frac{3y}{4}\\\frac{z^3}{\left(2-z\right)^2}+\frac{2-z}{8}+\frac{2-z}{8}\ge\frac{3z}{8}\end{cases}}\)

\(\Rightarrow P+\frac{12-2\left(x+y+z\right)}{8}\ge\frac{3}{4}\left(x+y+z\right)\)

\(\Rightarrow P\ge\frac{1}{12}\)

Dấu " = " xảy ra khi \(x=y=z=\frac{2}{3}\)

13 tháng 10 2019

Ta có : \(ab+bc+ca=2abc\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y+z=2\\P=\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^3}+\frac{z^3}{\left(2-z^2\right)}\end{cases}}\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge3\sqrt[3]{\frac{x^3}{64}}=\frac{3x}{4}\)

Tương tự ta có : \(\hept{\begin{cases}\frac{y^3}{\left(2-y\right)^2}+\frac{2-y}{8}+\frac{2-y}{8}\ge\frac{3y}{4}\\\frac{z^3}{\left(2-z\right)^2}+\frac{2-z}{8}+\frac{2-z}{8}\ge\frac{3z}{8}\end{cases}}\)

\(\Rightarrow P+\frac{12-2\left(x+y+z\right)}{8}\ge\frac{3}{4}\left(x+y+z\right)\)

\(\Rightarrow P\ge\frac{1}{2}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)

30 tháng 5 2016

Áp dụng :

\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)