K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2018

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{ab+bc+ca}{abc}=0\Rightarrow ab+bc+ca=0\\ \)

\(\Rightarrow bc=-ab-ac,ca=-ab-bc,ab=-bc-ca\)

\(\Rightarrow\frac{a^2+bc}{a^2+2bc}=\frac{a^2+bc}{a^2+bc+bc}=\frac{a^2+bc}{a^2+bc-ca-ab}=\frac{a^2+bc}{\left(a-b\right).\left(a-c\right)}\)

     Làm tương tự. có: \(\frac{b^2+ca}{b^2+2ca}=\frac{b^2+ca}{b^2+ca-ab-bc}=\frac{b^2+ca}{\left(a-b\right).\left(c-b\right)}\)

 \(\frac{c^2+ab}{c^2+2ab}=\frac{c^2+ab}{c^2+ab-ca-bc}=\frac{c^2+ab}{\left(b-c\right).\left(a-c\right)}\)

\(\Rightarrow A=\frac{a^2+bc}{\left(a-b\right).\left(a-c\right)}+\frac{b^2+ca}{\left(a-b\right).\left(c-b\right)}+\frac{c^2+ab}{\left(b-c\right).\left(a-c\right)}\)

\(=\frac{\left(a^2+bc\right).\left(b-c\right)}{\left(a-b\right).\left(b-c\right).\left(a-c\right)}-\frac{\left(b^2+ca\right).\left(a-c\right)}{\left(a-b\right).\left(b-c\right).\left(a-c\right)}+\frac{\left(c^2+ab\right).\left(a-b\right)}{\left(a-b\right).\left(b-c\right).\left(a-c\right)}\)

Sau đó bạn thực hiện tiếp nhé.

2 tháng 8 2021

Bài 1: Cho \(a,b,c\ge0:a^2+b^2+c^2=3\). CMR: \(a^4b^4+b^4c^4+c^4a^4\le3\)

Bài 2: Cho \(a,b,c\ge0\). CMR: \(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)

Bài 3: Cho \(a,b,c\ge0:a^2+b^2+c^2=a+b+c\). CMR: \(a^2b^2+b^2c^2+c^2a^2\le ab+bc+ca\)

Bài 4: Cho \(a,b,c\ge0\). CMR: \(4\left(a+b+c\right)^3\ge27\left(ab^2+bc^2+ca^2+abc\right)\)

Bài 5: Cho \(a,b,c\ge0:a+b+c=3\).CMR: \(\frac{1}{2bc^2+1}+\frac{1}{2ca^2+1}+\frac{1}{2ab^2+1}\ge1\)

30 tháng 3 2018

          \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Leftrightarrow\)\(\frac{ab+bc+ca}{abc}=0\)

\(\Rightarrow\)\(ab+bc+ca=0\)

\(\Rightarrow\)\(\hept{\begin{cases}ab=-\left(bc+ca\right)\\bc=-\left(ab+ca\right)\\ca=-\left(ab+bc\right)\end{cases}}\)

\(\Rightarrow\)\(\hept{\begin{cases}a^2+2bc=a^2+bc-ab-ca=\left(a-b\right)\left(a-c\right)\\b^2+2ac=b^2+ac-ab-bc=\left(b-c\right)\left(b-a\right)\\c^2+2ab=c^2+ab-bc-ca=\left(c-a\right)\left(c-b\right)\end{cases}}\)

\(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-c\right)\left(b-a\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)

P/S: đến đây tự lm nhé

10 tháng 7 2016

a,b,c khác nhau đôi một nghĩa là từng cặp số khác nhau ,là:

+a khác b

+b khác c

+c khác a

\(A=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)

Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0=>\frac{ab+bc+ac}{abc}=0=>ab+bc+ac=0\)

Suy ra: \(ab==-\left(bc+ac\right)=-bc-ac\)

    \(bc=-\left(ab+ac\right)=-ab-ac\)

\(ac=-\left(ab+bc\right)=-ab-bc\)

Nên \(a^2+2ab=a^2+bc+bc=a^2+bc+\left(-ab-ac\right)=a\left(a-b\right)-c\left(a-b\right)=\left(a-b\right)\left(a-c\right)\)

Tương tự,ta cũng có: \(b^2+2ac=\left(b-a\right)\left(b-c\right)\)

                               \(c^2+2ab=\left(c-a\right)\left(c-b\right)\)

Vậy \(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-c\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}=\frac{b-c+c-a+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=0\)

10 tháng 7 2016

những câu còn lại tương tự,bn tự làm nhé
 

19 tháng 1 2017

Ta có: \(a^2+b^2+c^2=\left(a+b+c\right)^2\)

\(\Leftrightarrow ab+bc+ca=0\)

Ta có: \(A=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)

\(=\frac{1}{a^2+2bc-ab-bc-ca}+\frac{1}{b^2+2ca-ab-bc-ca}+\frac{1}{c^2+2ab-ab-bc-ca}\)

\(=\frac{1}{a^2+bc-ca-ab}+\frac{1}{b^2+ca-ab-bc}+\frac{1}{c^2+ab-bc-ca}\)

\(=-\left(\frac{1}{\left(a-b\right)\left(c-a\right)}+\frac{1}{\left(b-c\right)\left(a-b\right)}+\frac{1}{\left(c-a\right)\left(b-c\right)}\right)\)

\(=-\frac{b-c+c-a+a-b+}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

PS: Hồi tối lười để người khác làm mà không ai làm thôi t làm vậy

18 tháng 1 2017

( a+b+c)^2 = a^2 + b^2 + c^2 

=> a^2 + b^2 + c^2 + 2ab + 2bc + 2ac = a^2 + b^2 + c^2 

=> a^2 + b^2 + c^2 + 2ab + 2bc + 2ac - a^2 - b^2 - c^2 = 0 

=> 2ab + 2bc + 2ac = 0 

ta có 

A = \(\frac{1}{a^2+2bc}\)\(\frac{1}{b^2+2ac}\)\(\frac{1}{c^2+2ab}\)

=  \(\frac{1}{a^2+2bc}\)\(\frac{1}{b^2+2ac}\)\(\frac{1}{c^2+2ab}\) + 2ab + 2bc + 2ac 

đến đây bạn nhóm lại nhé mk giải ra thì dài lắm nên chỉ gợi ý cho bn đấy đây thôi

7 tháng 1 2017

Vẫn có \(AB+BC+CA=0\), làm tương tự câu a (à giờ mới nhận ra có 2 chữ A, B và C trùng nhau).

Nên anh kí hiệu biểu thức là \(b\) nha.

\(\frac{A^2}{A^2+2BC}=\frac{A^2}{A^2+BC-CA-AB}=-\frac{A^2}{\left(A-B\right)\left(C-A\right)}\)

Quy đồng mẫu được \(b=-\left[\frac{A^2\left(B-C\right)+B^2\left(C-A\right)+C^2\left(A-B\right)}{\left(A-B\right)\left(B-C\right)\left(C-A\right)}\right]\).

Tự làm tiếp nha em, lâu rồi anh không làm cái này nên cũng lười.