Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Tính \(P=\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ac}{b^2}\)
P= abc(\(\frac{1}{^{a^3}}\)+\(\frac{1}{b^3}\)+\(\frac{1}{c^3}\)) = abc[(\(\frac{1}{a}\)+\(\frac{1}{b}\))3+\(\frac{1}{c^3}\)-\(\frac{3}{a^2b}\)-\(\frac{3}{ab^2}\)]=abc[(\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\))(....)- \(\frac{3}{a^2b}\)-\(\frac{3}{ab^2}\)]
=abc.(- \(\frac{3}{a^2b}\)-\(\frac{3}{ab^2}\)) =-3(\(\frac{c}{a}\)+\(\frac{c}{b}\)) = -3c(\(\frac{1}{a}\)+\(\frac{1}{b}\)) = -3c.\(\frac{-1}{c}\)=3
P = 3
Đầu tiên,bạn cần chứng minh x + y + z = 0 thì x3 + y3 + z3 = 3xyz ( Bạn ko biết c/m thì hỏi nhé)
Thay\(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3.\frac{1}{a}.\frac{1}{b}.\frac{1}{c}=\frac{3}{abc}\)
\(\Rightarrow M=\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ac}{b^2}=\frac{abc}{c^3}+\frac{abc}{a^3}+\frac{abc}{b^3}=abc\left(\frac{1}{c^3}+\frac{1}{a^3}+\frac{1}{b^3}\right)=abc.\frac{3}{abc}=3\)
\(P=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
\(=\frac{a}{a^2+b^2+c^2}+\frac{b}{a^2+b^2+c^2}+\frac{c}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\left(1\right)\)
Áp dụng BĐT AM-GM ta có: :
\(\frac{a}{a^2+b^2+c^2}+9a\left(a^2+b^2+c^2\right)\ge2\sqrt{9a^2}=6a\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{b}{a^2+b^2+c^2}+9b\left(a^2+b^2+c^2\right)\ge6b;\frac{c}{a^2+b^2+c^2}+9c\left(a^2+b^2+c^2\right)\ge6c\)
\(\Rightarrow\frac{a}{a^2+b^2+c^2}+\frac{b}{a^2+b^2+c^2}+\frac{c}{a^2+b^2+c^2}+9\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge6\left(a+b+c\right)\)
Theo BĐT Cauchy-Schwarz thì:
\(9\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge9\cdot\frac{\left(a+b+c\right)^2}{3}\cdot\left(a+b+c\right)=3\)
\(\Rightarrow\frac{a}{a^2+b^2+c^2}+\frac{b}{a^2+b^2+c^2}+\frac{c}{a^2+b^2+c^2}\ge6-3=3\)
Và \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{9}{ab+bc+ca}\ge\frac{9}{\frac{\left(a+b+c\right)^2}{3}}=27\)
Khi đó nhìn vào \(\left(1\right)\) thấy \(P\ge27+3=30\)
Xảy ra khi \(a=b=c=\frac{1}{3}\)
\(\left(\frac{1}{a}+\frac{1}{b}\right)^3=-\frac{1}{c^3}\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-3.\frac{1}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{3}{abc}\)
\(P=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc.\frac{3}{abc}=3\)
trước hết ta chứng minh: nếu x+y+z=0 thì x3+y3+z3=3xyz
thật vậy, vì x+y+z=0 => z=-(x+y)
=> z3=-[x3+y3+3xy(x+y)]
=> x3+y3+z3=-3xy(x+y)=-3xy(-z)
=> x3+y3+z3=3xyz
áp dụng vào bài đã cho, ta suy ra: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{3}{abc}\)
do đó \(P=\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ca}{b^2}=\frac{abc}{c^3}+\frac{bca}{a^3}+\frac{cab}{b^3}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc\cdot\frac{3}{abc}=3\)
vậy P=3
Chắc chắn là \(a^2+b^2+c^2=3\) rồi, thử \(a=b=c=\frac{1}{\sqrt{3}}\) là rõ
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ac}\ge\frac{\left(1+1+1\right)^2}{3+ab+bc+ca}\)
Ta có BĐT cơ bản \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow\frac{\left(1+1+1\right)^2}{3+ab+bc+ca}\ge\frac{\left(1+1+1\right)^2}{3+a^2+b^2+c^2}\)
\(\Rightarrow VT\ge\frac{\left(1+1+1\right)^2}{3+a^2+b^2+c^2}=\frac{9}{6}=\frac{3}{2}=VP\)
Đẳng thức xảy ra khi \(a=b=c=1\)
1. Vai trò a, b, c như nhau. Không mất tính tổng quát. Giả sử \(a\ge b\ge0\)
Mà \(ab+bc+ca=3\). Do đó \(ab\ge1\)
Ta cần chứng minh rằng \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\left(1\right)\)
Và \(\frac{2}{1+ab}+\frac{1}{1+c^2}\ge\frac{3}{2}\left(2\right)\)
Thật vậy: \(\left(1\right)\Leftrightarrow\frac{1}{1+a^2}-\frac{1}{1+ab}+\frac{1}{1+b^2}-\frac{1}{1+ab}\ge0\\ \Leftrightarrow\left(ab-a^2\right)\left(1+b^2\right)+\left(ab-b^2\right)\left(1+a^2\right)\ge0\\ \Leftrightarrow\left(a-b\right)\left[-a\left(1+b^2\right)+b\left(1+a^2\right)\right]\ge0\\ \Leftrightarrow\left(a-b\right)^2\left(ab-1\right)\ge0\left(BĐT:đúng\right)\)
\(\left(2\right)\Leftrightarrow c^2+3-ab\ge3abc^2\\ \Leftrightarrow c^2+ca+bc\ge3abc^2\Leftrightarrow a+b+c\ge3abc\)
BĐT đúng, vì \(\left(a+b+c\right)^2>3\left(ab+bc+ca\right)=q\)
và \(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\)
Nên \(a+b+c\ge3\ge3abc\)
Từ (1) và (2) ta có \(\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\ge\frac{3}{2}\)
Dấu ''='' xảy ra \(\Leftrightarrow a=b=c=1\)
Áp dụng BĐT Cauchy dạng \(\frac{9}{x+y+z}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\), ta được
\(\frac{9}{a+3b+2c}=\frac{1}{a+c+b+c+2b}\le\frac{1}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)
Do đó ta được
\(\frac{ab}{a+3b+2c}\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)=\frac{1}{9}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)
Hoàn toàn tương tự ta được
\(\frac{bc}{2a+b+3c}\le\frac{1}{9}\left(\frac{bc}{a+b}+\frac{bc}{b+c}+\frac{b}{2}\right);\frac{ac}{3a+2b+c}\le\frac{1}{9}\left(\frac{ac}{a+b}+\frac{ac}{b+c}+\frac{c}{2}\right)\)
Cộng theo vế các BĐT trên ta được
\(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{1}{9}\left(\frac{ac+bc}{a+b}+\frac{ab+ac}{b+c}+\frac{bc+ab}{a+c}+\frac{a+b+c}{2}\right)=\frac{a+b+c}{6}\)Vậy BĐT đc CM
ĐẲng thức xảy ra khi và chỉ khi a = b = c >0
Áp dụng : x + y + z = 0 suy ra x3 + y3 + z3 = 3xyz
1/a + 1/2b + 1/3c = 0 = >... rồi biến đổi nhé
\(VT=\frac{a^3}{a^2+abc}+\frac{b^3}{b^2+abc}+\frac{c^3}{c^2+abc}\)
Xét \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow ab+bc+ac=abc\)
\(\Rightarrow VT=\frac{a^3}{a^2+ab+bc+ac}+\frac{b^3}{b^2+ab+bc+ac}+\frac{c^3}{c^2+ab+bc+ac}\)
\(\Leftrightarrow VT=\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+a\right)\left(b+c\right)}+\frac{c^3}{\left(c+b\right)\left(c+a\right)}\)
Áp dụng bdt Cauchy ta có :
\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)
Thiết lập tương tự và thu lại ta có :
\(VT+\frac{a+b+c}{2}\ge\frac{3}{4}\left(a+b+c\right)\)
\(\Rightarrow VT\ge\frac{3}{4}\left(a+b+c\right)--\frac{1}{2}\left(a+b+c\right)=\frac{a+b+c}{4}\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b=c=3\)
Chúc bạn học tốt !!!