K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2019

a,

Ta có đenta'=[-(m+2)]^2-6m-1

                 =m^2+4m+4-6m-1

                 =m^2-2m+3

                 =(m-1)^2+2>0

vậy phương trình có 2 no pb với mọi m

20 tháng 10 2019

1,Giải sử x0 là nghiệm chung của hai pt

Ta có hệ: \(\left\{{}\begin{matrix}x_0^2-\left(m+2\right)x_0+3m-1=0\left(1\right)\\x_0^2-\left(2m+3\right)x_0+3m+3=0\end{matrix}\right.\)

=> \(\left(2m+3\right)x_0-\left(m+2\right)x_0+3m-1-3m-3=0\)

<=> \(x_0\left(m+1\right)-4=0\)

Do hai pt có nghiệm chung => \(x_0\in R\) => \(m\ne-1\)

<=> \(x_0=\frac{4}{m+1}\) thay vào (1) có

\(\frac{16}{\left(m+1\right)^2}-\frac{\left(m+2\right).4}{m+1}+3m-1=0\)

<=> \(\frac{16}{\left(m+1\right)^2}-\frac{4\left(m+2\right)\left(m+1\right)}{\left(m+1\right)^2}+\frac{3m\left(m+1\right)^2}{\left(m+1\right)^2}-\frac{\left(m+1\right)^2}{\left(m+1\right)^2}=0\)

<=> \(16-4\left(m^2+3m+2\right)+3m\left(m^2+2m+1\right)-\left(m^2+2m+1\right)=0\)

<=> \(16-4m^2-12m-8+3m^3+6m^2+3m-m^2-2m-1=0\)

<=> \(3m^3+m^2-11m+7=0\)

<=> \(3m^3-3m^2+4m^2-4m-7m+7=0\)

<=>\(3m^2\left(m-1\right)+4m\left(m-1\right)-7\left(m-1\right)=0\)

<=> \(\left(m-1\right)\left(3m^2+4m-7\right)=0\)

<=> \(\left(m-1\right)^2\left(3m+7\right)=0\)

<=> \(\left[{}\begin{matrix}m=1\\m=-\frac{7}{3}\end{matrix}\right.\)

20 tháng 10 2019

@@ cái gì vậy!!

11 tháng 2 2019

Bài 1:

a) Ta có \(f\left(a\right)=a^2\),\(\forall a\)

\(f\left(-a\right)=a^2\) \(\forall a\)

\(\Rightarrow f\left(a\right)=f\left(-a\right)\forall a\)

b)

\(f\left(a-1\right)=4\)

\(\Rightarrow\left(a-1\right)^2=4\)

\(\Rightarrow\left[{}\begin{matrix}a-1=2\\a-1=-2\end{matrix}\right.\)

TH1:

a-1 = 2

=> a = 3

ThH2:

a-1 = -2

=> a = -1

Bài 2:

a) Hàm số đồng biến khi :

\(m+2>0\)

\(\Rightarrow m>-2\)

b) Hàm số có GTLN là 0

=> \(\left(m+2\right)x^2\le0\)

Lại có \(x^2\ge0\)

=> m +2 \(\le0\)

=> m \(\le-2\)

c) Hàm số có GTNN là 0

=> \(\left(m+2\right)x^2\ge0\)

\(x^2\ge0\)

=> m+2 \(\ge0\)

=> \(m\ge-2\)

27 tháng 1 2017


a)
f(1) = 1+b+c =2
<=> 1+ b+c =2  => b+c = 1  (1)
f(-3) = 9-3b+c =0
<=>  3b-c=9                            (2)
Lấy (1) cộng (2)
b+c+3b-c=9+1
4b=10
b=10/4=5/2
=> c = -3/2
 

AH
Akai Haruma
Giáo viên
26 tháng 10 2018

Lời giải:

a)

\(f(-3)=(-3)^2=9; f(-\frac{1}{2})=(\frac{-1}{2})^2=\frac{1}{4}\)

\(f(0)=0^2=0\)

\(g(1)=3-1=2; g(2)=3-2=1; g(3)=3-3=0\)

b)

\(2f(a)=g(a)\)

\(\Leftrightarrow 2a^2=3-a\)

\(\Leftrightarrow 2a^2+a-3=0\Leftrightarrow (2a+3)(a-1)=0\)

\(\Rightarrow \left[\begin{matrix} a=\frac{-3}{2}\\ a=1\end{matrix}\right.\)