Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho đa thức \(f\left(x\right)\)bậc 3 với hệ số \(x^3\)là số nguyên dương thỏa mãn:
\(f\left(2019\right)=2020;f\left(2020\right)=2021\)
CMR \(f\left(2021\right)-f\left(2018\right)\)là hợp số
Ta có:
f(x)=\(\frac{x^2}{2x-2x^2-1}=\frac{x^2}{-\left(x-1\right)^2-x^2}\)
tiếp tục giờ ta tìm f(1-x) mục đích của việc này là để ghép cặp vì bạn để ý ghép sao cho tổng của tử bằng mẫu. Vây f(1-x)=\(\frac{\left(x-1\right)^2}{-x^2-\left(x-1\right)^2}\)
từ đây suy ra f(x)+f(1-x)= -1( bạn cũng xem lại đề cho mình nha tử là x^2 chứ không phải là 1 )
Giờ ta ghép cặp như sau: ta loại trừ f(\(\frac{1008}{2016}\)) và f(1) ra 1 ở đây mình rút gọn 2016/2016. 2 số này sẽ dùng để thay vào tính: Còn các số còn lại sẽ được ghép làm 1007 cặp mà mỗi cặp bằng -1 do cmt. vậy mình gọi cái cần tính là A thì
=> A=-1.1007-1-0,5=-1008,5
Bạn xem lại hộ xem thử đề đúng không nhé b. Sao không thấy có cơ sở để tính tổng này??
Biến đổi giả thiết \(2\left(a^2+b^2\right)-\left(a+b\right)=2ab\)
Mà ta có: \(2ab\le\frac{\left(a+b\right)^2}{2}\)nên \(2\left(a^2+b^2\right)-\left(a+b\right)\le\frac{\left(a+b\right)^2}{2}\)(*)
Theo BĐT Cauchy-Schwarz: \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)nên từ (*) suy ra \(\left(a+b\right)^2-\left(a+b\right)\le\frac{\left(a+b\right)^2}{2}\)
Đặt \(s=a+b>0\)thì \(s^2-s\le\frac{s^2}{2}\Leftrightarrow\frac{s^2}{2}-s\le0\Leftrightarrow s^2-2s\le0\Leftrightarrow s\left(s-2\right)\le0\)
Mà \(s>0\)nên \(s-2\le0\Rightarrow s\le2\)hay \(a+b\le2\)
\(F=\frac{a^3}{b}+\frac{b^3}{a}+2020\left(\frac{1}{a}+\frac{1}{b}\right)\ge\frac{a^4}{ab}+\frac{b^4}{ab}+2020.\frac{4}{a+b}\)\(\ge\frac{\left(a^2+b^2\right)^2}{2ab}+\frac{8080}{a+b}\ge\left(\frac{\left(a+b\right)^2}{2}+\frac{4}{a+b}+\frac{4}{a+b}\right)+\frac{8072}{a+b}\)
\(\ge3\sqrt[3]{\frac{\left(a+b\right)^2}{2}.\frac{4}{a+b}.\frac{4}{a+b}}+\frac{8072}{2}=4042\)
Đẳng thức xảy ra khi a = b = 1
a) Ta có: \(\left(x-3\right)\left(x-4\right)-2\left(3x-2\right)=\left(4-x\right)^2\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)-2\left(3x-2\right)-\left(x-4\right)^2=0\)
\(\Leftrightarrow\left(x-4\right)\left[\left(x-3\right)-\left(x-4\right)\right]-2\left(3x-2\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-3-x+4\right)-6x+4=0\)
\(\Leftrightarrow x-4-6x+4=0\)
\(\Leftrightarrow-5x=0\)
mà -5<0
nên x=0
Vậy: x=0
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+...+\frac{1}{\left(x+2019\right)\left(x+2020\right)}\)
( ĐKXĐ : \(x\ne\left\{0;-1;-2;...;-2019;-2020\right\}\))
\(=\frac{1}{x}-\frac{1}{\left(x+1\right)}+\frac{1}{\left(x+1\right)}-\frac{1}{\left(x+2\right)}+\frac{1}{\left(x+2\right)}-\frac{1}{\left(x+3\right)}+...+\frac{1}{\left(x+2019\right)}-\frac{1}{\left(x+2020\right)}\)
\(=\frac{1}{x}-\frac{1}{x+2020}\)
\(=\frac{x+2020}{x\left(x+2020\right)}-\frac{x}{x\left(x+2020\right)}\)
\(=\frac{x+2020-x}{x\left(x+2020\right)}\)
\(=\frac{2020}{x\left(x+2020\right)}\)
Bài giải
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+2019\right)\left(x+2020\right)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+2019}-\frac{1}{x+2020}\)
\(=\frac{1}{x}-\frac{1}{x+2020}\)
\(=\frac{x+2020}{x\left(x+2020\right)}-\frac{x}{x+2020}=\frac{2020}{x\left(x+2020\right)}\)
Nguyễn Lê Phước Thịnh White Hold HangBich2001 Phạm Vũ Trí Dũng Nguyễn Huyền Trâm
ủa bạn j ơi chữ x chành bành ra trên đề kìa mà bạn bảo tìm làm j nữa
đâu có đâu bạn ???
Mình dùng công cụ công thức của hoc24.vn mà
Bạn đợi chút nó sẽ load ra liền