Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
: Giả sử tồn tại đồng thời f(7) = 73 và f(3) = 58 :
=> f(7) = a.7^3 + b.7^2 + c.7 + d = 343a + 49b + 7c + d
f(3) = a.3^3 + b.3^2 + c.3 + d = 27a + 9b + 3c + d
=> f(7) + f(3) = 343a + 27a + 49b + 9b + 7c + 3c + d + d
=> f(7) + f(3) = 370a + 58b + 10c + 2d ⋮ 2 (vì a, b, c, d là các số nguyên)
=> f(7) + f(3) ⋮ 2
Nhưng theo giả thiết thì f(7) + f(3) = 73 + 58 = 131 không chia hết cho 2.
=> giả thiết nêu ra là vô lý.
Vậy với f(x) = ax^3 + bx^2 + cx + d (a, b, c, d là các số nguyên) thì không thể tồn tại f(7) = 73 và f(3) = 58.
Ta có : \(f(7)=a\cdot7^3+2\cdot b\cdot7^2+3\cdot c\cdot7+4d=343a+98b+21c+4d\)
Lại có : \(f(3)=a\cdot3^3+2\cdot b\cdot3^2+3\cdot c\cdot3+4d=27a+18b+9c+4d\)
Giả sử phản chứng nếu \(f(7)\)và \(f(3)\)đồng thời bằng 73 và 58 suy ra là :
\(f(7)-f(3)=(343a-27a)+(98b-18b)+(21c-9c)+(4d-4d)=73-58=15\)
\(\Rightarrow f(7)-f(3)=316a+90b+12c=15\)
Mà ta thấy các đơn thức chỉ có dạng chung duy nhất là 2k
\(f(7)-f(3)=2k=15\)
Mà 15 ko chia hết cho 2 , suy ra giả sử sai
=> đpcm
Ta có f(7) = a.7^3+2.b.7^2+3.c.7+4d = 343a +98b+21c+4d
Lại có f(3)= \(a.3^3+2.b.3^2+3.c.3+4.d=27a+18b+9c+4d\\ \)
Giả sử phản chứng : Nếu f(7) và f(3) đồng thời bằng 73 và 58 thì suy ra : \(f\left(7\right)-f\left(3\right)=\left(343a-27a\right)+\left(98b-18b\right)+\left(21c-9c\right)+\left(4d-4d\right)=73-58=15\)
\(\Rightarrow\)\(f\left(7\right)-f\left(3\right)=316a+90b+12c=15\)
Mà ta thấy các đơn thức chỉ có dạng chung duy nhất là 2k
\(\Rightarrow\)\(f\left(7\right)-f\left(3\right)=2k=15\)
Mà 15 ko chia hết cho 2 , suy ra giả sử sai
\(\Rightarrow\)\(\left(ĐPCM\right)\)
\(f\left(-1\right)=-a+b-c+d=2\)
\(f\left(0\right)=d=1\)
\(f\left(\frac{1}{2}\right)=\frac{1}{8}a+\frac{1}{4}b+\frac{1}{2}c+d=3\)
\(f\left(1\right)=a+b+c+d=7\)
Suy ra \(\hept{\begin{cases}-a+b-c=1\\\frac{1}{8}a+\frac{1}{4}b+\frac{1}{2}c=2\\a+b+c=6\end{cases}}\Leftrightarrow\hept{\begin{cases}2b=7\\\frac{1}{8}a+\frac{1}{4}b+\frac{1}{2}c=2\\a+b+c=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{1}{3}\\b=\frac{7}{2}\\c=\frac{13}{6}\end{cases}}\)
Lời giải:
Ta có thể viết dạng của $f(x)$ như sau:
\(f(x)=(x-1)(x-2)(x-3)(x-t)+g(x)\)
Trong đó, \(t\) là một số bất kỳ nào đó và \(g(x)\) là đa thức có bậc nhỏ hơn hoặc bằng $3$
Giả sử \(g(x)=mx^3+nx^2+px\)
\(\left\{\begin{matrix} f(1)=g(1)=m+n+p=10\\ f(2)=g(2)=8m+4n+2p=20\\ f(3)=g(3)=27m+9n+3p=30\end{matrix}\right.\)
Giải hệ trên thu được \(m=0,n=0,p=10\)
Như vậy \(f(x)=(x-1)(x-2)(x-3)(x-t)+10x\)
Do đó \(\left\{\begin{matrix} f(12)=990(12-t)+120=12000-990t\\ f(-8)=-990(-8-t)-80=7840+990t\end{matrix}\right.\)
\(\Rightarrow \frac{f(12)+f(-8)}{10}+26=\frac{12000+7840}{10}+26=2010\) (đpcm)
\(f\left(1\right)=a+b+c+d=a+4a+c+c+d=5a+2c+d\)
\(f\left(-2\right)=-8a+4b-2c+a=-8a+12a+4c-2c+a=5a+2c+d\)
\(f\left(1\right)f\left(-2\right)=\left(5a+2c+d\right)^2\)
(a,b,c,d thuộc Z => 5a+2c+d thuộc z => (5a+2c+d)^2 là số CP => dpcm