Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét f(x) =ax^2+bx+c
ta co f(1)=a+b+c=4, f(-1)=a-b+c=8
=> 2(a+c)=12
=> a+c=6 kết hợp a-c=-4 => a=1, c=5, kết hợp a+b+c=4 => b=-2
Vậy a=1, b=-2, c=5 là giá trị cần tìm.
Ta có: f(0)=1
<=> ax2 +bx+c=1
<=> c=1
f(1)=0
<=>ax2 +bx+c=0
<=> a+b+c=0
mà c=1
=>a+b=-1(1)
f(-1)=10
<=> ax2 +bx +c=10
<=>a-b+c=10
mà c=1
=>a-b=9(2)
Lấy (1) trừ (2) ta được (a+b)-(a-b)=-1-9
<=> 2b=-10
<=> b=-5
=>a=4
Vậy a=4,b=-5,c=1
Có lẽ bạn nên sửa đề thành \(f\left(x\right)=...x^2+1...\)hoặc là \(g\left(x\right)=...\left(bx-1\right)...\)
Ta có:
\(f\left(x\right)=ax^3+4x^3-4x+8=\left(a+4\right)x^3-4x+8\)
\(g\left(x\right)=x^3+4x\left(bx-1\right)+c-3=x^3+4bx^2-4x+c-3\)
Để \(f\left(x\right)=g\left(x\right)\Leftrightarrow\hept{\begin{cases}a+4=1\\4b=0\\c-3=8\end{cases}\Leftrightarrow\hept{\begin{cases}a=-3\\b=0\\c=11\end{cases}}}\)
Kết luận
\(\left\{{}\begin{matrix}f\left(0\right)=5\Rightarrow0+0+5\Rightarrow c=5\\f\left(1\right)=0\Rightarrow a+b+5=0\\f\left(5\right)=0\Rightarrow25a+5b+5=0\end{matrix}\right.\) \(\left\{{}\begin{matrix}\left(1\right)\\\left(2\right)\\\left(3\right)\end{matrix}\right.\)
tu (3) => b =-1-5a
tu (2) => a-1-5a+5 =0 => a =1 ;b =-6
y =x^2 -6x +5
y(-1) =1 +6 +5 khac 3 => loai
y(-1/2) =1/4 -6/2 +5 =1/4 +2 = 9/4 nhan
Q(1/2;9/4) thuoc dths
Ta có: \(f\left(x\right)=ax^2+bx+c\)
\(f\left(1\right)=a\cdot1^2+b\cdot1+c=4\Rightarrow a+b+c=4\)
\(f\left(-1\right)=a\left(-1\right)^2+b\left(-1\right)+c=8\Rightarrow a-b+c=8\)
Và \(a-c=4\) suy ra ta có \(\left\{{}\begin{matrix}a+b+c=4\\a-b+c=8\\a-c=4\end{matrix}\right.\)
Dễ dàng suy ra \(\left\{{}\begin{matrix}a=5\\b=-2\\c=1\end{matrix}\right.\)
Vậy hệ số \(a;b;c=5;-2;1\)