K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2018

Giả sử thương của f(x) cho x là Q(x)

Có f(x) = x.Q(x)+27

Với x=0

=>f(0)=b=27

Giả sử thương của f(x) cho x+5 là P(x)

Có f(x) = (x+5)P(x)+7

Với x=-5

=>f(-5)=75-5a+b=0

\(\Rightarrow5a-b=75\)

\(\Rightarrow5a=75+27=102\)

\(\Rightarrow a=\frac{102}{5}\)

9 tháng 12 2019

Èo,phân tích ra tưởng cái hệ 3 ẩn r định bỏ cuộc và cái kết:(

Ta có:

\(f\left(x\right)=\left(x-2\right)\cdot Q\left(x\right)+5\)

\(f\left(x\right)=\left(x+1\right)\cdot K\left(x\right)-4\)

Theo định lý Huy ĐZ ta có:

\(f\left(2\right)=5\Rightarrow8+4a+2b+c=5\left(1\right)\)

\(\Rightarrow f\left(-1\right)=-4\Rightarrow-1+a-b+c=-4\left(2\right)\)

Lấy \(\left(1\right)-\left(2\right)\) ta được:

\(9+3a+3b=9\Leftrightarrow a+b=0\)

Khi đó:

\(\left(a^3+b^3\right)\left(b^5+c^5\right)\left(c^7+d^7\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)\left(b^5+c^5\right)\left(c^7+a^7\right)\) 

\(=0\) ( theo Huy ĐZ thì \(a+b=0\) )

9 tháng 12 2019

Ap dung dinh ly Bozout ta co

\(f\left(2\right)=2^3+a.2^2+b.2+c=5\)

<=> \(4a+2b+c=-3\) (1)

tuong tu \(f\left(-1\right)=\left(-1\right)^3+a-b+c=-4\)

<=> \(a-b+c=-3\) (2)

tu (1) va (2) => \(4a+2b=a-b=-3\) 

=> a=b+-3

=> \(4\left(b-3\right)+2b=-3\Rightarrow b=\frac{3}{2}\)

=> \(a=-\frac{3}{2}\)

=> \(\left(a^3+b^3\right)=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(\frac{3}{2}-\frac{3}{2}\right)\left(a^2-ab+b^2\right)=0\)

=> gia tri bieu thuc =0

29 tháng 9 2018

b đâu rồi bạn??? 🙃

\(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{3x^2-4.5x+\left(a+4.5\right)x-1.5a-6.75+1.5a+33.75}{2x-3}\)

\(=1.5x+\left(a+4.5\right)+\dfrac{1.5a+33.75}{2x-3}\)

Để dư là 2 thì 1,5a+33,75=2

=>1,5a=-31,75

=>a=-127/6

16 tháng 3 2020

Theo định lý Bezout ta có:

\(f\left(1\right)=f\left(2\right)=f\left(-3\right)=2;f\left(-2\right)=-10\)

Ta có:

\(f\left(1\right)=a+b+c+d+1=2\)

\(f\left(2\right)=8a+4b+2c+d+16=2\)

\(f\left(-3\right)=-27a+9b-3c+d+81=2\)

\(f\left(-2\right)=-8a+4b-2c+d+16=-10\)

Đến đây bạn dùng Casio fx 580 tìm nghiệm hộ mình nhé !

9 tháng 1 2020

:V tìm a,b,c luôn chứ tìm a làm gì có chắc đầu bài đc đâu

Áp dụng định lý Bezout ta có:

\(F\left(x\right)\)chia cho x+1 dư -4\(\Rightarrow F\left(-1\right)=-4\)

\(\Leftrightarrow a-b+c=-3\left(1\right)\)

\(F\left(x\right)\)chia cho x-2 dư 5\(\Rightarrow F\left(2\right)=5\)

\(\Leftrightarrow4a+2b+c=-3\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\hept{\begin{cases}a-b+c=-3\\4a+2b+c=-3\end{cases}\Rightarrow\hept{\begin{cases}a=0\\b=0\\c=-3\end{cases}}}\)

Vậy ...

10 tháng 7 2018

a)  Dư của f(x ) chia cho  x+2 là f(-2)

Áp dụng định lý Bơ-zu ta có :

\(f\left(-2\right)=\left(-2\right)^3+3.\left(-2\right)^2+a\)

\(=-8+12+a\)

\(=4+a\)

\(\Leftrightarrow a=-4\)

Vậy để f(x) chia hết cho x+2 => a= -4

b) Dư của f(x ) chia cho x-1 là f(1)

Áp dụng định lí Bơ-zu ta có :

\(f\left(1\right)=1^2-3.1+a\)

\(=1-3+a\)

\(=-2+a\)

\(\Rightarrow a=2\)

Vậy ..............

c)  

Đặt phép chia dọc theo đa thức 1 biến đã sắp xếp

d)  Theo định lí Bơ-zu ta có :

\(f\left(x\right):x+1\)có dư là \(f\left(-1\right)\)

\(f\left(-1\right)=\left(-1\right)^3+a.\left(-1\right)+b\)

\(=-a+b-1\)

Mà theo đề bài cho dư = 7

\(\Rightarrow-a+b-1=7\) 

\(\Rightarrow-a+b=8\) (1)

Tương tự :

\(f\left(x\right):x-1\)có dư là \(f\left(1\right)\)

\(f\left(1\right)=1^3+a.1+b\)

\(=a+b+1\)

Theo đề bài cho dư 7

\(\Rightarrow a+b+1=7\)

\(\Rightarrow a+b=6\)(2)

Từ (1) và (2)              ( cộng vế với vế)

\(\Rightarrow\hept{\begin{cases}a+b=6\\-a+b=8\end{cases}}\)

\(\Rightarrow2b=14\)

\(\Rightarrow b=7\)

\(\Leftrightarrow a+7=6\)

\(\Rightarrow a=-1\)

Vậy \(f\left(x\right)=x^3-x+7\)