\(\dfrac{x}{y+z}\)+ \(\dfrac{y}{z+x}\) + 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2018

nhân cả 2 vế với 2 rồi bunhia

6 tháng 4 2018

câu c là \(\dfrac{1}{2}\)(x+y+z) nhé, mih chép nhầm

13 tháng 11 2017

1) \(\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}=0\)

\(\Leftrightarrow\dfrac{3}{x-3}+\dfrac{6x}{x^2-9}+\dfrac{x}{x+3}=0\)

\(\Leftrightarrow\dfrac{3}{x-3}+\dfrac{6x}{\left(x-3\right)\left(x+3\right)}+\dfrac{x}{x+3}=0\)

\(\Leftrightarrow\dfrac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{6x}{\left(x-3\right)\left(x+3\right)}+\dfrac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{3\left(x+3\right)+6x+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{3x+9+6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{x^2+6x+9}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{x^2+2.x.3+3^2}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{x+3}{x-3}=0\)

\(\Leftrightarrow x+3=0\)

\(\Leftrightarrow x=-3\)

Vậy x=-3

13 tháng 11 2017

bạn ơi x ko thể bằng -3 đc vì

\(\dfrac{x}{x+3}=\dfrac{-3}{-3+3}=\dfrac{-3}{0}\) là sai

12 tháng 12 2017

\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)

\(\Rightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)

\(\Rightarrow ayz+bxz+cxy=0\)

\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)

\(\Rightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{xz}{ac}+\dfrac{yz}{bc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{cxy+bxz+ayz}{abc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{0}{abc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+0=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)

12 tháng 12 2017

Có:

\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)

\(\Rightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)

\(\Rightarrow ayz+bxz+cxy=0\)

Có:

\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)

\(\Rightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1^2\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{yz}{bc}+\dfrac{xz}{ac}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{ayz+bxz+cxy}{abc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\left(ayz+bxz+cxy=0\right)\)

3 tháng 7 2018

a/ +) \(\dfrac{x}{3}=\dfrac{y}{4}\Leftrightarrow\dfrac{x}{9}=\dfrac{y}{12}\)\(\left(1\right)\)

+) \(\dfrac{y}{3}=\dfrac{z}{5}\Leftrightarrow\dfrac{y}{12}=\dfrac{z}{20}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\)

\(\Leftrightarrow\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{20}\)

Theo t/c dãy tỉ số bằng nhau ta có :

\(\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{20}=\dfrac{2x-3y+z}{18-36+20}=\dfrac{6}{2}=3\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{9}=3\\\dfrac{y}{12}=3\\\dfrac{z}{20}=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=27\\y=36\\z=60\end{matrix}\right.\)

Vậy ..

b/ \(2x=3y=5z\)

\(\Leftrightarrow\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}\)

\(\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)

Theo t/c dãy tỉ số bằng nhau tcos :

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=5\\\dfrac{y}{10}=5\\\dfrac{z}{6}=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=75\\y=50\\z=30\end{matrix}\right.\)

Vậy..

c/ tương tự

3 tháng 7 2018

bạn có thể giải cho mik phần c đc ko