Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\) =>\(\dfrac{ayz+bxz+cxy}{xyz}=0\) =>\(ayz+bxz+cxy=0\) \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=0\)=>\(\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=0\)
\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{yz}{bc}+\dfrac{zx}{ac}\right)=0=>\dfrac{x^2}{a2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{cxy+ayz+bxz}{abc}\right)=0\) \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=0\) (vì ayz+bxz+cxy=0)
Vậy \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2011=2011\)
\(1.\) Giả sử : \(a\ge b\ge c\Rightarrow a+b\ge a+c\ge b+c\)
Ta có : \(\dfrac{c}{a+b}\le\dfrac{c}{b+c};\dfrac{b}{a+c}\le\dfrac{b}{b+c};\dfrac{a}{b+c}=\dfrac{a}{b+c}\)
\(\Rightarrow\dfrac{c}{a+b}+\dfrac{b}{a+c}+\dfrac{a}{b+c}\le\dfrac{b+c}{b+c}+\dfrac{a}{b+c}=1+\dfrac{a}{b+c}< 1+1=2\left(đpcm\right)\)
\(2.\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)
\(\Leftrightarrow\dfrac{yz+xz+xy}{xyz}=\dfrac{1}{x+y+z}\)
\(\Leftrightarrow\left(x+y+z\right)\left(xy+yz+xz\right)=xyz\)
\(\Leftrightarrow x^2y+x^2z+xy^2+y^2z+xyz+xyz+yz^2+xz^2=0\)
\(\Leftrightarrow xy\left(x+y+z\right)+yz\left(x+y+z\right)+xz\left(x+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)y\left(x+z\right)+xz\left(x+z\right)=0\)
\(\Leftrightarrow\left(x+z\right)\left(xy+y^2+yz+xz\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-y\\y=-z\\x=-z\end{matrix}\right.\)
+) Với : \(x=-y\) , ta có :
Đpcm \(\Leftrightarrow-\dfrac{1}{y^{2011}}+\dfrac{1}{y^{2011}}+\dfrac{1}{z^{2011}}=\dfrac{1}{-y^{2011}+y^{2011}+z^{2011}}\)
\(\Leftrightarrow\dfrac{1}{z^{2011}}=\dfrac{1}{z^{2011}}\left(luôn-đúng\right)\)
Tương tự với 2 TH còn lại .
\(\RightarrowĐCPM\)
Sửa đề :
\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=0\)
Bài làm
đề có sai chỗ nào ko bn,mk thấy chỗ giả thiết sai sai thì phải,bn kt lại giúp mk
1)
\(\Leftrightarrow\left(x^2-2+\dfrac{1}{x^2}\right)+\left(y^2-2+\dfrac{1}{y^2}\right)+z^2=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2+z^2=0\)
\(\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\Rightarrow\left|x\right|=1\\y-\dfrac{1}{y}=0\Rightarrow\left|y\right|=1\\z=0\end{matrix}\right.\)
dk\(x,y,z,a,b,c\ne0\)\(\left\{{}\begin{matrix}\dfrac{a}{x}=A\\\dfrac{b}{y}=B\\\dfrac{c}{z}=C\end{matrix}\right.\) \(\Rightarrow A,B,C\ne0\)
\(\left\{{}\begin{matrix}A+B+C=2\\\dfrac{1}{A}+\dfrac{1}{B}+\dfrac{1}{C}=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}A^2+B^2+C^2+2\left(AB+BC+AC\right)=4\\\dfrac{ABC}{A}+\dfrac{ABC}{B}+\dfrac{ABC}{C}=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}AB+BC+AC=0\\A^2+B^2+C^2=4\end{matrix}\right.\)
\(\left(\dfrac{a}{x}\right)^2+\left(\dfrac{b}{y}\right)^2+\left(\dfrac{c}{z}\right)^2=4\)
a,Sửa lại đề nha bạn:Tính A = \(\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}\)
\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=\dfrac{bcx+acy+abz}{abc}=0\)
\(\Rightarrow bcz+acy+abz=0\)
(2) \(\Rightarrow\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}+2\left(\dfrac{ab}{xy}+\dfrac{ac}{xz}+\dfrac{bc}{xz}\right)=4\)\(\Rightarrow A=\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}=4-2.\left(\dfrac{abz+acy+bcz}{xyz}\right)=4\)b, \(a+b+c=0\Rightarrow a+b=-c\)
\(\Rightarrow a^2+2ab+b^2=c^2\Rightarrow a^2+b^2-c^2=-2ab\)Tương tự: \(b^2+c^2-a^2=-2bc\)
\(c^2+a^2-b^2=-2bc\)
Vậy \(B=\dfrac{ab}{-2ab}+\dfrac{bc}{-2bc}+\dfrac{ac}{-2ac}=\dfrac{-3}{2}\)
\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=0\Leftrightarrow\dfrac{xbc+yac+zab}{abc}=0\Leftrightarrow xbc+yac+zab=0\)(1)
\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=2\Leftrightarrow\left(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}\right)^2=4\)
\(\Rightarrow\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}+\dfrac{2ab}{xy}+\dfrac{2bc}{yz}+\dfrac{2ac}{xz}=4\)
\(\Rightarrow\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}+2\left(\dfrac{ab}{xy}+\dfrac{bc}{yz}+\dfrac{ac}{xz}\right)=4\)
\(\Rightarrow\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}+2\left(\dfrac{zab+xbc+yac}{xyz}\right)=4\)
\(\Rightarrow\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}=4\) (vì \(zab+xbc+yac=0\) từ (1) )
Hình như đề sai thì phải.(Xem có viết đúng đề ko nhé) Mk chỉ tính được cái này không tính được cái đề của bạn cho
Đề sai r
Chỗ tính giá trị bt A = ...
Phải là
Tính giá trị của biểu thức
\(A=\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}\)
vi a/x + b/y + c/z =0 suy ra ayz/xyz + bxz/xyz + cxy/xyz =0 suy ra ayz+bxz+cxy /xyz =0 suy ra ayz + bxz + cxy =0
vi x/a + y/b =z/c =0 suy ra (x/a + y/b + z/c )^2 =0 suy ra x^2/a^2 +y^2/b^2 + z^2/c^2 + 2(xy/ab + xz/ac + yz/bc) =0
suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2(cxy+ bxz +ayz /abc) =0
suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 =0
suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 +2011 = 2011