\(\dfrac{\overline{ab}}{a+b}=\dfrac{\overline{bc}}{b+c}v\text{à}.c\ne0.CMR:\dfrac{a}{b}=\dfr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2017

Ta có: \(\dfrac{\overline{ab}}{a+b}=\dfrac{\overline{bc}}{b+c}\)

\(\Rightarrow\overline{ab}\left(b+c\right)=\overline{bc}\left(a+b\right)\)

\(\Rightarrow ab^2+abc=abc+b^2c\)

\(\Rightarrow ab^2=b^2c\)

\(\Rightarrow ab=bc\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\rightarrowđpcm.\)

14 tháng 6 2017

Ta có:

\(\dfrac{\overline{ab}}{a+b}=\dfrac{\overline{bc}}{b+c}\)

\(\Rightarrow\overline{ab}.\left(b+c\right)=\overline{bc}.\left(a+b\right)\)

\(\Rightarrow\left(10a+b\right)\left(b+c\right)=\left(10b+c\right)\left(a+b\right)\)

\(\Rightarrow10ab+10ac+b^2+bc=10ab+10b^2+ac+bc\)

\(\Rightarrow10ac+b^2=10b^2+ac\) (bớt mỗi bên đi \(10ab+bc\))

\(\Rightarrow10ac-ac=10b^2-b^2\Rightarrow9ac=9b^2\)

\(\Rightarrow ac=b^2\) (chia mỗi bên cho 9)

\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\) (đpcm)

Chúc bạn học tốt!!!

1 tháng 11 2018

Với số lượng chữ b ở tử và mẫu như nhau, ta có:

(abbb...b) / (bbb...bc)

= (a/c) . (bb...b / bb...b)

= (a/c) . 1

= a/c (đpcm)

1 tháng 11 2018

là số \(\overline{abbb...b}\) ( n - 1 chữ số b chứ k phải là abbb...b đâu bn )

9 tháng 11 2017

1+1=3

1234567

16 tháng 10 2022

Câu 2: 

Theo đề, ta có: \(\dfrac{10a+b}{a+b}=\dfrac{10b+c}{b+c}\)

=>10ab+10ac+b^2+bc=10ab+10b^2+ac+bc

=>9ac-9b^2=0

=>ac-b^2=0

=>ac=b^2

=>a/b=b/c

31 tháng 12 2017

Ta có:

\(\dfrac{\overline{ab}}{b}=\dfrac{\overline{bc}}{c}=\dfrac{\overline{ca}}{a}\)

\(\Rightarrow\dfrac{10a}{b}+\dfrac{b}{b}=\dfrac{10b}{c}+\dfrac{c}{c}=\dfrac{10c}{a}+\dfrac{a}{a}\)

\(\Rightarrow\dfrac{10a}{b}+1=\dfrac{10b}{c}+1=\dfrac{10c}{a}+1\)

\(\Rightarrow\dfrac{10a}{b}=\dfrac{10b}{c}=\dfrac{10c}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{10a}{b}=\dfrac{10b}{c}=\dfrac{10c}{a}=\dfrac{10a+10b+10c}{b+c+a}=\dfrac{10\left(a+b+c\right)}{a+b+c}=10\)

\(\Rightarrow\left\{{}\begin{matrix}10a=10b\\10b=10c\\10c=10a\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c\)

\(\Rightarrow\left(\overline{abc}\right)^{123}=\left(\overline{aaa}\right)^{123}\)(1)

\(\Rightarrow c=111^{123}.a^{40}.a^{41}.a^{42}=111^{123}.a^{123}=\left(111.a\right)^{123}=\left(\overline{aaa}\right)^{123}\)(2)

Từ (1) và (2) suy ra: \(\left(\overline{abc}\right)^{123}=111^{123}.a^{40}.b^{41}.c^{42}\)

12 tháng 4 2018

Vâng và i don't know