K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2018

ta có : \(\dfrac{a}{c}=\dfrac{c}{b}\Leftrightarrow ab=c^2\)

khi đó ta có : \(\dfrac{b-a}{a}=\dfrac{b^2-a^2}{a^2+c^2}\Leftrightarrow\dfrac{b-a}{a}=\dfrac{\left(b-a\right)\left(b+a\right)}{a^2+ab}\)

\(\Leftrightarrow\dfrac{b-a}{a}=\dfrac{\left(b-a\right)\left(b+a\right)}{a\left(a+b\right)}\Leftrightarrow\dfrac{b-a}{a}=\dfrac{b-a}{a}\) (luôn đúng)

\(\Rightarrow\) (đpcm)

13 tháng 11 2017

ta có \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\Rightarrow ab.\left(c^2+d^2\right)=cd.\left(a^2+b^2\right)\)

suy ra \(ab.\left(c^2+d^2\right)\)=\(abc^2+abd^2=acbc+adbd\) (1)

\(cd\left(a^2+b^2\right)=a^2cd+b^2cd+bcbd\) =acad+bcbd (2)

(1);(2) suy ra acbc+adbd=acad+bcbd

nên bc+ad=bc+ad

suy ra ad=bc nên \(\dfrac{a}{b}=\dfrac{c}{d}\)

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Bài 1:

$\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt$. Khi đó:

\(\frac{2a^2-3ab+5b^2}{2a^2+3ab}=\frac{2(bt)^2-3.bt.b+5b^2}{2(bt)^2+3bt.b}=\frac{b^2(2t^2-3t+5)}{b^2(2t^2+3t)}\)

$=\frac{2t^2-3t+5}{2t^2+3t}(1)$
\(\frac{2c^2-3cd+5d^2}{2c^2+3cd}=\frac{2(dt)^2-3.dt.d+5d^2}{2(dt)^2+3dt.d}=\frac{d^2(2t^2-3t+5)}{d^2(2t^2+3t)}=\frac{2t^2-3t+5}{2t^2+3t}(2)\)

Từ $(1);(2)$ suy ra đpcm.

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Bài 2:

Từ $\frac{a}{c}=\frac{c}{b}\Rightarrow c^2=ab$. Khi đó:

$\frac{b^2-c^2}{a^2+c^2}=\frac{b^2-ab}{a^2+ab}=\frac{b(b-a)}{a(a+b)}$ (đpcm)

27 tháng 12 2018

\(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\Leftrightarrow\dfrac{1}{c}.2=\dfrac{1}{a}+\dfrac{1}{b}\)

\(\Leftrightarrow\dfrac{2}{c}=\dfrac{a+b}{ab}\Leftrightarrow2ab=\left(a+b\right)c\)

\(\Leftrightarrow ab+ab=ac+bc\)

\(\Leftrightarrow ab-bc=ac-ab\Leftrightarrow b\left(a-c\right)=a\left(c-b\right)\)

\(\Leftrightarrow\dfrac{a}{b}=\dfrac{a-c}{c-b}\)

Bài này mình cũng đã trả lời rồi đấy ạ =))

12 tháng 2 2018

a) Ta có: \(\dfrac{a}{c}=\dfrac{c}{b}\Rightarrow ab=c^2\)

Khi đó ta có: \(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a^2+ab}{b^2+ab}=\dfrac{a\left(a+b\right)}{b\left(a+b\right)}=\dfrac{a}{b}\left(đpcm\right)\)

câu b: https://hoc24.vn/hoi-dap/question/559910.html

21 tháng 7 2018

Ta có:

\(\dfrac{a}{c}=\dfrac{c}{b}\)

\(\Rightarrow ab=c^2\left(1\right)\)

Thay (1) vào \(\dfrac{a^2+c^2}{b^2+c^2}\) ta được

\(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a^2+ab}{b^2+ab}=\dfrac{a\left(a+b\right)}{b\left(a+b\right)}=\dfrac{a}{b}\)

\(\RightarrowĐpcm\)

b) Ta có: ab = c2 ( Theo a ) (1)

Thay (1) vào biểu thức \(\dfrac{b^2-a^2}{a^2+c^2}\) ta được:

\(\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{b^2-ab+ab-a^2}{a^2+ab}=\dfrac{b\left(b-a\right)+a\left(b-a\right)}{a\left(a+b\right)}=\dfrac{\left(a+b\right)\left(b-a\right)}{a\left(a+b\right)}=\dfrac{b-a}{a}\)

\(\RightarrowĐpcm\)

2 tháng 11 2017

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a^2+c^2}{b^2+d^2}\)

=>\(\dfrac{a}{b}=\dfrac{a^2+c^2}{b^2+d^2}\) (đpcm)

8 tháng 4 2017

BẠn ơi hình như sai đề

31 tháng 10 2017

Bài 1:

Áp dụng t.c của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\\ =\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a^3}{b^3}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(dpcm\right)\)

1 tháng 11 2017

Thanks nha!!!

19 tháng 12 2017

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\frac{1}{c}:\frac{1}{2}=\frac{1}{a}+\frac{1}{b}\)

\(\frac{2}{c}=\frac{a+b}{ab}\)

\(\Rightarrow2ab=ac+bc\)

\(\Rightarrow ac-ab=ab-bc\)

\(\Rightarrow a.\left(c-b\right)=b.\left(a-c\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)( đpcm )

Võ Nguyễn Thương Thương