Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=>\frac{a}{a-b}=\frac{c}{c-d} \)
\(a,\)
Xét \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\)
mà \(ad=bc\left(gt\right)\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
\(b,\)
\(\dfrac{a}{b}=\dfrac{c}{d}\) (Chứng minh câu a)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)
\(\Rightarrow\dfrac{a+c}{b+d}=\dfrac{a}{b}\)
\(c,\)
Xét \(\dfrac{a}{c}=\dfrac{b}{d}\Leftrightarrow ad=bc\)
mà \(ad=bc\left(gt\right)\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(d,\)
\(\dfrac{a}{c}=\dfrac{b}{d}\) (Chứng minh câu c)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{a+b}{c+d}\)
\(\Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
\(e,\)
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{2a+b}{2c+d}\)
\(\Rightarrow\dfrac{2a+b}{2c+d}=\dfrac{a}{c}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) ⇒ a=bk, c=dk
a) Ta có: ✽ \(\dfrac{a+b}{b}=\dfrac{bk+b}{b}=\dfrac{b\left(k+1\right)}{b}=k+1\)
✽\(\dfrac{c+d}{d}=\dfrac{dk+d}{d}=\dfrac{d\left(k+1\right)}{d}=k+1\)
nên \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
b) \(\dfrac{a-c}{c}=\dfrac{bk-dk}{dk}=\dfrac{k\left(b-d\right)}{dk}=\dfrac{b-d}{d}\)
Vậy \(\dfrac{a-c}{c}=\dfrac{b-d}{d}\)
Bài 1:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)
\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)
Ta có đpcm.
Bài 2:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)
Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.
Ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(1\right)\)
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) ta có:
\(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
Ta có \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(1\right)\)
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\) =>\(\left(\dfrac{a}{b}\right)^3=\left(\dfrac{b}{c}\right)^3=\left(\dfrac{c}{d}\right)^3\)
=>\(\left(\dfrac{a+b+c}{b+c+d}\right)^3\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) =>\(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)(đpcm)
Chúc Bạn học Tốt
a, Từ \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\Rightarrow ad=bc\)
\(ac-ad=ac-bc\)
\(a\left(c-d\right)=c\left(a-b\right)\)
\(\Rightarrow\dfrac{a}{a-b}=\dfrac{c}{c-d}\Rightarrow\dfrac{c-d}{c}=\dfrac{a-b}{a}\Leftrightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
b, Từ \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\left(1\right)\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{b-c}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
c, Từ \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow ad=bc\)
\(\Rightarrow ad+ac=bc+ac\\ a\left(c+d\right)=c\left(a+b\right)\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
Đặt\(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
a) \(\dfrac{a-b}{a}=\dfrac{bk-b}{bk}=\dfrac{b\left(k-1\right)}{bk}=\dfrac{k-1}{k}\)
\(\dfrac{c-d}{c}=\dfrac{dk-d}{dk}=\dfrac{d\left(k-1\right)}{dk}=\dfrac{k-1}{k}\)
\(\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
b) \(\dfrac{a+b}{a-b}=\dfrac{bk+b}{bk-b}=\dfrac{b\left(k+1\right)}{b\left(k-1\right)}=\dfrac{k+1}{k-1}\)
\(\dfrac{c+d}{c-d}=\dfrac{dk+d}{dk-d}=\dfrac{d\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)
\(\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
c) \(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\)
\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\)
\(\Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
a.Vì \(\dfrac{a}{b}=\dfrac{c}{d}\)
=>\(\dfrac{a}{b}-1=\dfrac{c}{d}-1\)
=>\(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)(đpcm)
b.Vì\(\dfrac{a}{b}=\dfrac{c}{d}\)
=>\(\dfrac{a}{c}=\dfrac{b}{d}\)
=>\(\dfrac{a}{c}-1=\dfrac{b}{d}-1\)
=>\(\dfrac{a-c}{c}=\dfrac{b-d}{d}\)(đpcm)
a)\(\dfrac{a-b}{b}\) = \(\dfrac{c-d}{d}\)
\(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)
=>\(\dfrac{a}{b}\) -1= \(\dfrac{c}{d}\) -1
=> \(\dfrac{a}{b}\) - \(\dfrac{b}{b}\) = \(\dfrac{c}{d}\) - \(\dfrac{d}{d}\)
=> \(\dfrac{a-b}{b}\) = \(\dfrac{c-d}{d}\)
a) ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{b}=\dfrac{4c}{4d}=\dfrac{a+4c}{b+4d}\left(đpcm\right)\)
b;c;d tương tự hết
b: a/b=c/d
nên 3a/3b=2c/2d
=>a/b=c/d=(3a+2c)/(3b+2d)
c: a/c=b/d nên a/c=2b/2d=(a-2b)/(c-2d)
d: a/c=b/d
nên 5a/5c=2b/2d
=>a/c=b/d=(5a-2b)/(5c-2d)
Ta có: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{a+b+c}{b+c+d}\\\dfrac{b}{c}=\dfrac{a+b+c}{b+c+d}\\\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\end{matrix}\right.\)
\(\Rightarrow\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}.\dfrac{a+b+c}{b+c+d}.\dfrac{a+b+c}{b+c+d}\)
\(\Rightarrow\dfrac{a}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\) (đpcm)
bn cũng có thể tham khảo
https://hoc24.vn/hoi-dap/question/466226.html
Bài 1:
Áp dụng t.c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\\ =\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a^3}{b^3}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(dpcm\right)\)
\(a,\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\\ b,\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\\ \Leftrightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)