K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2018

Ta có: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{a+b+c}{b+c+d}\\\dfrac{b}{c}=\dfrac{a+b+c}{b+c+d}\\\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}.\dfrac{a+b+c}{b+c+d}.\dfrac{a+b+c}{b+c+d}\)

\(\Rightarrow\dfrac{a}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\) (đpcm)

3 tháng 1 2018

bn cũng có thể tham khảo

https://hoc24.vn/hoi-dap/question/466226.html

31 tháng 10 2017

Bài 1:

Áp dụng t.c của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\\ =\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a^3}{b^3}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(dpcm\right)\)

1 tháng 11 2017

Thanks nha!!!

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 1:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)

\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 2:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)

Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.

AH
Akai Haruma
Giáo viên
3 tháng 4 2018

Lời giải:

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

\(\Rightarrow \left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3(*)\)

Lại có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow \left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\)

\(\Leftrightarrow \left(\frac{a}{b}\right)^3=\frac{a}{d}(**)\)

Từ \((*); (**)\Rightarrow \left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\) (đpcm)

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Bài 1:

$\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt$. Khi đó:

\(\frac{2a^2-3ab+5b^2}{2a^2+3ab}=\frac{2(bt)^2-3.bt.b+5b^2}{2(bt)^2+3bt.b}=\frac{b^2(2t^2-3t+5)}{b^2(2t^2+3t)}\)

$=\frac{2t^2-3t+5}{2t^2+3t}(1)$
\(\frac{2c^2-3cd+5d^2}{2c^2+3cd}=\frac{2(dt)^2-3.dt.d+5d^2}{2(dt)^2+3dt.d}=\frac{d^2(2t^2-3t+5)}{d^2(2t^2+3t)}=\frac{2t^2-3t+5}{2t^2+3t}(2)\)

Từ $(1);(2)$ suy ra đpcm.

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Bài 2:

Từ $\frac{a}{c}=\frac{c}{b}\Rightarrow c^2=ab$. Khi đó:

$\frac{b^2-c^2}{a^2+c^2}=\frac{b^2-ab}{a^2+ab}=\frac{b(b-a)}{a(a+b)}$ (đpcm)

4 tháng 11 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) (1)

a) Từ (1) ta có:

\(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\) (2)

\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\) (3)

Từ (2) và (3) suy ra \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

b) Từ (1) ta có:

\(\dfrac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\dfrac{b^{2018}.k^{2018}+d^{2018}.k^{2018}}{b^{2018}+d^{2018}}=\dfrac{k^{2018}\left(b^{2018}+d^{2018}\right)}{b^{2018}+d^{2018}}=k^{2018}\) (4)

\(\dfrac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}=\dfrac{\left(bk+dk\right)^{2018}}{\left(b+d\right)^{2018}}=\dfrac{\left[k\left(b+d\right)\right]^{2018}}{\left(b+d\right)^{2018}}=k^{2018}\) (5)

Từ (4) và (5) suy ra \(\dfrac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\dfrac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}\)

24 tháng 7 2017

giúp mình với

11 tháng 10 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) (*)

a) Từ (*)suy ra:

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\dfrac{b^2.k^2+b^2}{d^2.k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}\)\(=\dfrac{b^2}{d^2}\) (1)

\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\dfrac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\dfrac{b^2}{d^2}\)(2)

Từ (1) và (2) suy ra: \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\) (đpcm)

b) Tương tự câu a nhé bạn!

9 tháng 8 2017

a) \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

\(\Rightarrow ad=cb\)

=> \(ad+bd=bc+bd\)

\(\Rightarrow d\left(a+b\right)=b\left(c+d\right)\)

\(\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

9 tháng 8 2017

Đặt:

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\Rightarrow\dfrac{a+b}{b}=\dfrac{bk+b}{b}=\dfrac{b\left(k+1\right)}{b}=k+1\)

\(\Rightarrow\dfrac{c+d}{d}=\dfrac{dk+d}{d}=\dfrac{d\left(k+1\right)}{d}=k+1\)

\(\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\rightarrowđpcm\)

\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b^2}{d^2}\)

\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{\left[b\left(k-1\right)\right]^2}{\left[d\left(k-1\right)\right]^2}=\dfrac{b^2}{d^2}\)

\(\Rightarrow\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\rightarrowđpcm\)

25 tháng 11 2017

A)\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}\)

áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)=\(\dfrac{a}{a-b}=\dfrac{c}{c-d}\) (đpcm)

28 tháng 9 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

a, Ta có: \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{bk.b}{dk.d}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}\)

\(\Rightarrow\dfrac{b^2.k}{d^2.k}=\dfrac{\left[b.\left(k+1\right)\right]^2}{\left[d.\left(k+1\right)\right]^2}\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2}{d^2}\) \(\Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

b, Ta có:\(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{bk.b}{dk.d}=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}\)

\(\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2.k^2+b^2}{d^2.k^2+d^2}\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}\)

\(\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2}{d^2}\Rightarrow\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)

CHÚC BẠN HỌC TỐT!!

28 tháng 9 2017

\(\dfrac{a}{b}=\dfrac{c}{d}\)=>\(\dfrac{a}{c}=\dfrac{b}{d}\)( áp dụng tỉ lệ thức )

Ta đặt:

\(\dfrac{a}{c}=\dfrac{b}{d}=k\) => a=ck ; b=dk

a) \(\dfrac{ab}{cd}=\dfrac{ck.dk}{cd}=\dfrac{k^2.\left(c.d\right)}{c.d}=k^2\) (1)

\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(ck+dk\right)^2}{\left(c+d\right)^2}=\dfrac{k^2.\left(c+d\right)^2}{\left(c+d\right)^2}=k^2\) (2)

Từ (1) và (2) suy ra \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

b) \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(ck\right)^2+\left(dk\right)^2}{c^2+d^2}=\dfrac{c^2k^2+d^2k^2}{c^2+d^2}=\dfrac{k^2.\left(c^2+d^2\right)}{c^2+d^2}=k^2\) (3)

Từ (1) và (3) suy ra \(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)