K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

a, Ta có: \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{bk.b}{dk.d}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}\)

\(\Rightarrow\dfrac{b^2.k}{d^2.k}=\dfrac{\left[b.\left(k+1\right)\right]^2}{\left[d.\left(k+1\right)\right]^2}\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2}{d^2}\) \(\Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

b, Ta có:\(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{bk.b}{dk.d}=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}\)

\(\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2.k^2+b^2}{d^2.k^2+d^2}\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}\)

\(\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2}{d^2}\Rightarrow\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)

CHÚC BẠN HỌC TỐT!!

28 tháng 9 2017

\(\dfrac{a}{b}=\dfrac{c}{d}\)=>\(\dfrac{a}{c}=\dfrac{b}{d}\)( áp dụng tỉ lệ thức )

Ta đặt:

\(\dfrac{a}{c}=\dfrac{b}{d}=k\) => a=ck ; b=dk

a) \(\dfrac{ab}{cd}=\dfrac{ck.dk}{cd}=\dfrac{k^2.\left(c.d\right)}{c.d}=k^2\) (1)

\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(ck+dk\right)^2}{\left(c+d\right)^2}=\dfrac{k^2.\left(c+d\right)^2}{\left(c+d\right)^2}=k^2\) (2)

Từ (1) và (2) suy ra \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

b) \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(ck\right)^2+\left(dk\right)^2}{c^2+d^2}=\dfrac{c^2k^2+d^2k^2}{c^2+d^2}=\dfrac{k^2.\left(c^2+d^2\right)}{c^2+d^2}=k^2\) (3)

Từ (1) và (3) suy ra \(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)

1 tháng 10 2017

Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}\)

Ta đặt: \(\dfrac{a}{c}=\dfrac{b}{d}=k\) => a=ck ; b=dk

a) \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(bk\right)^2-\left(dk\right)^2}{c^2-d^2}=\dfrac{b^2k^2-d^2k^2}{c^2-d^2}=\dfrac{k^2\left(b^2-d^2\right)}{b^2-d^2}=k^2\)(1)

\(\dfrac{ab}{cd}=\dfrac{ck.dk}{cd}=\dfrac{k^2\left(c.d\right)}{cd}=k^2\) (2)

Từ (1) và (2) => \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\)

b) \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(ck-dk\right)^2}{\left(c-d\right)^2}=\dfrac{k^2\left(c-d\right)^2}{\left(c-d\right)^2}=k^2\) (3)

Từ (2) và (3) => \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\). Chúc bạn học tốt hehe

2 tháng 10 2017

thanks

13 tháng 10 2017

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a.b}{c.d}=\dfrac{a+b}{c+d}.\dfrac{a+b}{c+b}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

13 tháng 10 2017

Ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a.b}{c.d}=\dfrac{a+b}{c+d}.\dfrac{a+b}{c+d}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

24 tháng 9 2017

Gọi \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=k\(\Rightarrow\)\(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có:\(\dfrac{ab}{cd}\)=\(\dfrac{bk.b}{dk.d}\)=\(\dfrac{b^2.k}{d^2.k}\)=\(\dfrac{b^2}{d^2}\)(vì k khác 0) 1

\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)=\(\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}\)=\(\dfrac{\left[b.\left(k-1\right)\right]^2}{\left[d.\left(k-1\right)\right]^2}\)=\(\dfrac{b^2}{d^2}\)(vì k-1 khác 0) 2

Từ 1 và 2:

\(\Rightarrow\)\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)=\(\dfrac{ab}{cd}\)

Vậy \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)=\(\dfrac{ab}{cd}\)(điều cần chứng minh)

24 tháng 9 2017

Đặt :

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\d=ck\end{matrix}\right.\)

Ta có :

\(VT=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-dk\right)^2}{\left(dk-d\right)^2}=\dfrac{b^2-\left(k-1\right)^2}{d^2-\left(k-1\right)^2}=\dfrac{b^2}{d^2}\)\(\left(1\right)\)

\(VP=\dfrac{ab}{cd}=\dfrac{bk.b}{dk.d}=\dfrac{b^2}{d^2}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)

4 tháng 12 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Thay vào ta có:

\(\dfrac{ab}{cd}=\dfrac{bk.b}{dk.d}=\dfrac{b^2\cdot k}{d^2\cdot k}=\dfrac{b^2}{d^2}\left(1\right)\)

\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}\)

\(=\dfrac{\left[b.\left(k+1\right)\right]^2}{\left[d.\left(k+1\right)\right]^2}\)

\(=\left(\dfrac{b}{d}\right)^2=\dfrac{b^2}{d^2}\left(2\right)\)

Từ (1) và (2) suy ra: đpcm

4 tháng 12 2017

Gia su \(\dfrac{a}{b}=\dfrac{c}{d}=k\)=> a=bk; c=dk

The vao ta co:

\(\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}\)<=>\(\dfrac{b^2\cdot k}{d^2\cdot k}=\dfrac{b^2\cdot k^2-b^2}{d^2\cdot k^2-d^2}\)<=>\(\dfrac{b^2}{d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}\)

=>\(\dfrac{b^2}{d^2}=\dfrac{b^2}{d^2}\)

10 tháng 4 2017

hình như đề sai đó bạn

10 tháng 4 2017

bạn sửa hộ mik \(\left(\dfrac{a^2+b^2}{c^2+d^2}\right)^2\) thành\(\dfrac{a^2+b^2}{c^2+d^2}\)nha!!

20 tháng 5 2017

a, Ta có :\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}=k\\ \Rightarrow a=bk;c=dk\)

Thay a = bk và c = dk vào VT ta được:

\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b^2}{d^2}\)

Thay a = bk và c = dk vào VP ta được :

\(\dfrac{ab}{cd}=\dfrac{bk\times b}{dk\times d}=\dfrac{b^2}{d^2}\)

=> VT = VP

Vậy \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\)

b, Ta có : \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}=k\)

\(\Rightarrow a=bk;c=dk\)

Thay a = bk và c = dk vào VT ta được:


\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{\left[b\times\left(k-1\right)\right]^2}{\left[d\times\left(k-1\right)\right]^2}=\dfrac{b^2}{d^2}\)

Thay a = bk và c = dk vào VP ta được :

\(\dfrac{ab}{cd}=\dfrac{bk\times b}{dk\times d}=\dfrac{b^2}{d^2}\)

=> VT = VP

Vậy \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\)

29 tháng 9 2017

VP và VT là j vậy bn

15 tháng 10 2018

Mình hướng dẫn thôi nhé:

Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=kb\\c=kd\end{matrix}\right.\) . Sau đó thế vào biểu thức tính rồi suy ra đpcm

Ví dụ bài đầu tiên: Thế a = kb; c=kd vào biểu thức,ta có:

\(\dfrac{a}{a+b}=\dfrac{kb}{kb+b}=\dfrac{kb}{b\left(k+1\right)}=\dfrac{k}{k+1}\) (1)

\(\dfrac{c}{c+d}=\dfrac{kd}{kd+d}=\dfrac{kd}{d\left(k+1\right)}=\dfrac{k}{k+1}\) (2)

Từ (1) và (2) ,ta có đpcm: \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

Các bài sau làm tương tự:Thế a=kb ; c=kd vào biểu thức rồi tính từng vế . Sau đó so sánh hai vế. Thấy hai vế = nhau => đpcm

24 tháng 9 2017

Đặt :

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\d=ck\end{matrix}\right.\)

Ta có :

\(VT=\dfrac{ab}{cd}=\dfrac{bk.b}{dk.d}=\dfrac{b^2}{d^2}\left(1\right)\)

\(VP=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{b^2+\left(k+1\right)^2}{d^2+\left(k+1\right)^2}=\dfrac{b^2}{d^2}\)\(\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)

24 tháng 9 2017

Gọi \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=k\(\Rightarrow\)\(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có:\(\dfrac{ab}{cd}\)=\(\dfrac{bk.b}{dk.d}\)=\(\dfrac{b^2.k}{d^2.k}\)=\(\dfrac{b^2}{d^2}\)=\(\left(\dfrac{b}{d}\right)^2\)(vì k khác 0) 1

\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)=\(\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}\)=\(\dfrac{\left[b.\left(k+1\right)\right]^2}{\left[d.\left(k+1\right)\right]^2}\)\(\left(\dfrac{b}{d}\right)^2\)=(vì k+1 khác 0) 2

Từ 1 và 2:

\(\Rightarrow\)\(\dfrac{ab}{cd}\)=\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

Vậy \(\dfrac{ab}{cd}\)=\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)(điều cần chứng minh)

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{a^2-b^2}{ab}=\dfrac{b^2k^2-b^2}{bk\cdot b}=\dfrac{b^2\left(k^2-1\right)}{b^2k}=\dfrac{k^2-1}{k}\)

\(\dfrac{c^2-d^2}{cd}=\dfrac{d^2k^2-d^2}{dk\cdot d}=\dfrac{d^2\left(k^2-1\right)}{d^2\cdot k}=\dfrac{k^2-1}{k}\)

Do đó: \(\dfrac{a^2-b^2}{ab}=\dfrac{c^2-d^2}{cd}\)

b: \(\dfrac{\left(a+b\right)^2}{a^2+b^2}=\dfrac{\left(bk+b\right)^2}{b^2k^2+b^2}=\dfrac{b^2\cdot\left(k+1\right)^2}{b^2\left(k^2+1\right)}=\dfrac{\left(k+1\right)^2}{k^2+1}\)

\(\dfrac{\left(c+d\right)^2}{c^2+d^2}=\dfrac{\left(dk+d\right)^2}{d^2k^2+d^2}=\dfrac{\left(k+1\right)^2}{k^2+1}\)

Do đó: \(\dfrac{\left(a+b\right)^2}{a^2+b^2}=\dfrac{\left(c+d\right)^2}{c^2+d^2}\)