K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

Theo bài ra ta có:

\(a+b+c=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

\(=\dfrac{bc+ac+ab}{abc}=bc+ac+ab\)

Ta lại có:

\(\left(a.b.c-1\right)+\left(a+b+c\right)-\left(bc+ca+ab\right)=0\)

\(=>\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\)

\(=>\left[{}\begin{matrix}a-1=0\\b-1=0\\c-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\)

CHÚC BẠN HỌC TỐT.........

18 tháng 7 2017

\(a+b+c=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\\ \Leftrightarrow a+b+c=\dfrac{bc+ac+ab}{abc}\\ \Leftrightarrow a+b+c=bc+ac+ab\\ \Leftrightarrow a+b+c-ab-bc-ac+abc-1=0\\ -a\left(b-1\right)-c\left(b-1\right)+ac\left(b-1\right)+\left(b-1\right)=0\\ \Leftrightarrow\left(b-1\right)\left(-a-c+ac+1\right)=0\\ \Leftrightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)\\ \Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\)

28 tháng 2 2021

`1/a+1/b+1/c=1/(a+b+c)`

`<=>(a+b)/(ab)+(a+b)/(c(a+b+c))=0`

`<=>(a+b)(ab+ac+bc+c^2)=0`

`<=>(a+b)(a+c)(b+c)=0`

`=>` $\left[ \begin{array}{l}a=-b\\b=-c\\c=-a\end{array} \right.$

`=>` PT luôn tồn tại 2 số đối nhau

21 tháng 3 2017

Bài 1:a,b,c ba cạnh tam giác => a,b,c dương

\(\left\{{}\begin{matrix}a+c>b\\a+b>c\\b+c>a\end{matrix}\right.\) ta có: \(\dfrac{x}{y}< \dfrac{x+p}{y+p}\forall_{x,y,p>0\&x< y}\)

\(VT=\dfrac{a}{a+b}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a+c}{a+b}+\dfrac{b}{c+a}< \dfrac{a+c+c}{a+b+c}+\dfrac{b+b}{a+b+c}=\)

\(=\dfrac{a+b+c+b+c}{a+b+c}< \dfrac{\left(a+b+c\right)+\left(A+b+c\right)}{a+b+c}< \dfrac{2\left(b+a+c\right)}{a+b+c}=2=VP\)

p/s: đề sao làm vậy:

mình nghi đề phải thế này: \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\) cách làm đơn giản hơn

22 tháng 3 2017

hướng dẫn bài 2,3 giúp mình với

20 tháng 7 2017

Đặt vế trái BĐT cần chứng minh là P

Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) ( Tự chứng minh BĐT này ), ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

\(\Rightarrow\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}\le\dfrac{1}{\dfrac{4}{a+b}}=\dfrac{a+b}{4}\left(1\right)\)

Tương tự: \(\dfrac{1}{\dfrac{1}{b}+\dfrac{1}{c}}\le\dfrac{b+c}{4}\left(2\right)\)

\(\dfrac{1}{\dfrac{1}{c}+\dfrac{1}{a}}\le\dfrac{c+a}{4}\left(3\right)\)

Cộng \(\left(1\right),\left(2\right),\left(3\right)\) vế theo vế, ta được:

\(P\le\dfrac{a+b+b+c+c+a}{4}=\dfrac{a+b+c}{2}\)

Dấu ''='' xảy ra khi và chỉ khi a=b=c

7 tháng 4 2018

Có gì đâu nhỉ?

Cauchy-Schwarz:

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{\left(1+1+1\right)^2}{2\left(a+b+c\right)}=\dfrac{9}{2\left(a+b+c\right)}=\dfrac{4,5}{a+b+c}>\dfrac{3}{a+b+c}\)

7 tháng 4 2018

áp dụng BĐT cauchy- schwarz ta có

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{\left(1+1+1\right)^2}{2\left(a+b+c\right)}\)

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{9}{2\left(a+b+c\right)}\)

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{3}{a+b+c}\) (đpcm)

9 tháng 4 2018

Câu hỏi của Miamoto Shizuka - Toán lớp 8 | Học trực tuyến

19 tháng 3 2017

giả sử \(\dfrac{a+b}{2a-b}\dfrac{c+b}{2c-b}< 4\)

\(< =>\dfrac{a+b}{2a-b}+\dfrac{c+b}{2c-b}-4< 0\)

\(< =>\dfrac{2ac-ab+2bc-b^2+2ac-bc+2ab-b^2-2bc+4b^2+4ac-2ab}{4ac-2ab-2bc+b^2}< 0\)

<=> \(\dfrac{8ac-bc-ab+2b^2}{4ac-2\left(ab+bc\right)+b^2}< 0\)

\(\left(do\dfrac{1}{a}+\dfrac{1}{c}=\dfrac{2}{b}< =>\dfrac{a+c}{ac}=\dfrac{2}{b}< =>ab+bc=2ac\right)\)

<=> \(\dfrac{8ac-2ac+2b^2}{b^2}< 0< =>\dfrac{6ac+2b^2}{b^2}< 0\)

mà a,b,c là số dương theo giả thiết nên \(\dfrac{6ac+2b^2}{b^2}\)không thể bé hơn 0

=> giả sử sai => \(\dfrac{a+b}{2a-b}+\dfrac{c+b}{2c-b}-4\) phải lớn hơn hoặc bằng 0

=> \(\dfrac{a+b}{2a-b}+\dfrac{c+b}{2c-b}\) lớn hơn hoặc bằng 4 (Đpcm)

19 tháng 3 2017

mình nghĩ nếu giải bám sát thì sẽ xác thực hơn là giải sử vậy cách giải nên chỉ tính cái cần cm minh rồi đổi vế rồi dựa vào điều kiện người ta cho thì hay hơn