K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2017

Áp dụng dãy tỉ số bằng nhau ta có:

\(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b} =\frac{a+b+c}{3(a+b+c)}=\frac{1}{3} \)

=>a=3(2b+c)

=>b=3(2c+a)

=>c=3(2a+b)

=> A=\(\frac{2b+c}{a}+\frac{2c+a}{b}+\frac{2a+b}{c}=\frac{2b+c}{3(2b+c)} +\frac{2c+a}{3(2c+a)}+\frac{2a+b}{3(2a+b)} \)=\(\frac{1}{3}+\frac{1}3{}+\frac{1}3{} \)=1


25 tháng 3 2018

\(a;b;c>0\) nên \(a+b+c>0\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{2b+c-a}{a}=\dfrac{2c+a-b}{b}=\dfrac{2a+b-c}{c}=\dfrac{2b+c-a+2c+a-b+2a+b-c}{a+b+c}=2\)

\(\Rightarrow\left\{{}\begin{matrix}2b+c=3a\Leftrightarrow3a-2b=c\\2c+a=3b\Leftrightarrow3b-2c=a\\2a+b=3c\Leftrightarrow3c-2a=b\end{matrix}\right.\)

Khi đó: \(\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{abc}=\dfrac{abc}{abc}=1\)

30 tháng 7 2017

Ta có: \(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\dfrac{2a+2b+2c}{a+b+c}=2\)

\(\Rightarrow\dfrac{2b+c-a}{a}=2\Leftrightarrow2b+c-a=2a\Leftrightarrow2b+c=3a\Leftrightarrow c=3a-2b\)

Và : \(2b+c=3a\Leftrightarrow2b=3a-c\)

Tương tự: \(3b-2c=a\)\(2c=3b-a\)

\(3c-2a=b\)\(2a=3c-b\)

Thay vào Q, ta được:

\(Q=\dfrac{c.a.b}{2b.2c.2a}=\dfrac{1}{8}\)

AH
Akai Haruma
Giáo viên
5 tháng 3 2018

Lời giải:

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{2b+c-a}{a}=\frac{2c+a-b}{b}=\frac{2a+b-c}{c}=\frac{2b+c-a+2c+a-b+2a+b-c}{a+b+c}\)

\(=\frac{2(a+b+c)}{a+b+c}=2\)

Do đó: \(\left\{\begin{matrix} 2b+c-a=2a\\ 2c+a-b=2b\\ 2a+b-c=2c\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 2b=3a-c\\ 2c=3b-a\\ 2a=3c-b\end{matrix}\right.\) và \(\left\{\begin{matrix} c=3a-2b\\ a=3b-2c\\ b=3c-2a\end{matrix}\right.\)

Suy ra: \(P=\frac{(3a-2b)(3b-2c)(3c-2a)}{(3a-c)(3b-a)(3c-b)}=\frac{c.a.b}{2b.2c.2a}=\frac{1}{8}\)

6 tháng 3 2018

\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)<=>\(\dfrac{2b+c}{a}-1=\dfrac{2c+a}{b}-1=\dfrac{2a+b}{c}-1\)

<=>\(\dfrac{2b+c}{a}=\dfrac{2c+a}{b}=\dfrac{2a+b}{c}=\dfrac{2b+c+2c+a+2a+b}{a+b+c}=\dfrac{3\left(a+b+c\right)}{a+b+c}=3\)=>\(\left\{{}\begin{matrix}2b+c=3a\Rightarrow\left\{{}\begin{matrix}3a-2b=c\\3a-c=2b\end{matrix}\right.\\2c+a=3b\Rightarrow\left\{{}\begin{matrix}3b-2c=a\\3b-a=2c\end{matrix}\right.\\2a+b=3c\Rightarrow\left\{{}\begin{matrix}3c-2a=b\\3c-b=2a\end{matrix}\right.\end{matrix}\right.\) thay vào

\(P=\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}=\dfrac{c.a.b}{2b.2c.2a}=\dfrac{1}{8}\)

AH
Akai Haruma
Giáo viên
7 tháng 11 2017

Lời giải:

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{2b+c-a+2c-b+a2a+b-c}{a+b+c}=\frac{2(a+b+c)}{a+b+c}=2\)

\(\left\{\begin{matrix} 2b+c-a=2a\\ 2c-b+a=2b\\ 2a+b-c=2c\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2b+c=3a\\ 2c+a=3b\\ 2a+b=3c\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} c=3a-2b\\ a=3b-2c\\ b=3c-2a\end{matrix}\right.\Rightarrow (3a-2b)(3b-2c)(3c-2a)=abc\) (1)

\(\left\{\begin{matrix} 2b=3a-c\\ 2c=3b-a\\ 2a=3c-b\end{matrix}\right.\Rightarrow (3a-c)(3b-a)(3c-b)=8abc\) (2)

Từ (1),(2) suy ra \(M=\frac{abc}{8abc}=\frac{1}{8}\)

4 tháng 3 2017

Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\) \(\dfrac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\dfrac{2a+2b+2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

Do \(\dfrac{2b+c-a}{a}=2\Rightarrow2b+c-a=2a\)

\(\Rightarrow2b+c-a+a=3a\)

\(\Rightarrow2b+c=3a\Rightarrow3a-2b=c\)

Lại do \(\dfrac{2c-b+a}{b}=2\) \(\Rightarrow2c-b+a=2b\)

\(\Rightarrow2c+a-3b=0\)

\(\Rightarrow3b-2c=a\)

Ta lại có \(\dfrac{2a+b-c}{c}=2\Rightarrow2a+b-c=2c\)

\(\Rightarrow2a+b-c+c=3c\)

\(\Rightarrow2a +b=3c\)

\(\Rightarrow3c-2a=b\)

Khi đó:

\(P=\dfrac{c.a.b}{2b.2c.2a}=\dfrac{1}{8}\) (đoạn này mk làm hơi tắt, nếu không hiểu thì nói mk nhé!)

Vậy \(P=\dfrac{1}{8}.\)

Chú ý: Ở tử của p/s phải là 3a \(-2b\) mới làm được bài này.

5 tháng 3 2017

uh, mk nhầm leu

2 tháng 12 2017

\(a+b+c+d\ne0\) nên áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=\dfrac{a+b+c+d}{b+c+d+a}=1\)

\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=d\\d=a\end{matrix}\right.\) \(\Rightarrow a=b=c=d\) (1)

Thay (1) vào P, ta có:

\(P=\dfrac{2a-a}{a+a}+\dfrac{2a-a}{a+a}+\dfrac{2a-a}{a+a}=\dfrac{2a-a}{a+a}\)

\(\Rightarrow P=\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=2\)

Vậy P = 2

2 tháng 12 2017

Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=k\)

\(\Rightarrow\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}.\dfrac{d}{a}=k^4\)

\(\Rightarrow k=\pm1\)

- Với \(k=1\) :

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}\)

\(\Rightarrow a=b=c=d\)

- Với \(k=-1\) :

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=-1\)

\(\Rightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-d\\d=-a\end{matrix}\right.\)

\(\Rightarrow a=-b=c=-d\)

\(\Rightarrow P=\dfrac{2a+a}{2a+a}+\dfrac{-2a-a}{-2a-a}+\dfrac{2a+a}{2a+a}+\dfrac{-2a-a}{-2a-a}\)

\(\Rightarrow P=4\)