Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có: \(\dfrac{3x-2y}{5}=\dfrac{5y-3z}{2}=\dfrac{2z-5x}{2}\)
\(\Rightarrow\dfrac{15x-10y}{25}=\dfrac{10y-6z}{4}=\dfrac{6z-15x}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\Rightarrow\dfrac{15x-10y}{25}=\dfrac{10y-6z}{4}=\dfrac{6z-15x}{6}=\dfrac{15x-10y+10y-6z+6z-15x}{25+4+6}=0\)
\(\Rightarrow\left\{{}\begin{matrix}15x-10y=0\\10y-6z=0\\6z-15x=0\end{matrix}\right.\Rightarrow15x=10y=6z\)
\(\Rightarrow\dfrac{15x}{30}=\dfrac{10y}{30}=\dfrac{6z}{30}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{10x}{20}=\dfrac{3y}{9}=\dfrac{2z}{10}=\dfrac{10x-3y-2z}{20-9-10}=\dfrac{5}{1}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=10\\y=15\\z=25\end{matrix}\right.\)
Vậy...
\(\dfrac{3x-2y}{5}=\dfrac{5y-3z}{2}=\dfrac{2z-5x}{2}\)
\(\Rightarrow\dfrac{5\left(3x-2y\right)}{25}=\dfrac{2\left(5y-3z\right)}{4}=\dfrac{3\left(2z-5x\right)}{6}\)
\(\Rightarrow\dfrac{15x-10y}{25}=\dfrac{10y-6z}{4}=\dfrac{6z-15x}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{15x-10y}{25}=\dfrac{10y-6z}{4}=\dfrac{6z-15x}{6}\)
\(=\dfrac{15x-10y+10y-6z+6z-15x}{25+4+6}\)
\(=0\)
\(\Rightarrow\left\{{}\begin{matrix}3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\\5y=3z\Rightarrow\dfrac{y}{3}=\dfrac{z}{5}\\2z=5x\Rightarrow\dfrac{z}{5}=\dfrac{x}{2}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
\(\Rightarrow\dfrac{10x}{20}=\dfrac{3y}{9}=\dfrac{2z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{10x}{20}=\dfrac{3y}{9}=\dfrac{2z}{10}=\dfrac{10x-3y-2z}{20-9-10}=\dfrac{5}{1}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=5.2=10\\y=5.3=15\\z=5.5=25\end{matrix}\right.\)
g,
\(\dfrac{3x-2y}{5}=\dfrac{2z-5x}{3}=\dfrac{5y-3z}{2}\)
\(\Rightarrow\dfrac{15x-10y}{25}=\dfrac{6z-15x}{9}=\dfrac{10y-6z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\dfrac{15x-10y}{25}=\dfrac{6z-15x}{9}=\dfrac{10y-6z}{4}=\dfrac{15x-10y+6z-15x+10y-6z}{25+9+4}=0\)\(\Rightarrow3x-2y=2z-5x=5y-3z=0\)
* 3x - 2y = 0 \(\Rightarrow3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\)
* 2z - 5x = 0 \(\Rightarrow2z=5x\Rightarrow\dfrac{x}{2}=\dfrac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y+z}{2+3+5}=\dfrac{50}{10}=5\)
\(\cdot\dfrac{x}{2}=5\Rightarrow x=10\)
\(\cdot\dfrac{y}{3}=5\Rightarrow y=15\)
\(\cdot\dfrac{z}{5}=5\Rightarrow z=25\)
\(\dfrac{3x-2y}{5}=\dfrac{2z-5x}{3}=\dfrac{5y-3z}{2}\)
\(=\dfrac{15x-10y}{25}=\dfrac{6z-15x}{9}=\dfrac{10y-6z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{3x-2y}{5}=\dfrac{2z-5x}{3}=\dfrac{5y-3z}{2}=\dfrac{15x-10y}{25}=\dfrac{6z-15x}{9}=\dfrac{10y-6z}{4}\)
\(=\dfrac{15x-10y+6z-15x+10y-6z}{25+9+4}=0\)
⇒\(3x=2y\)⇒\(\dfrac{x}{2}=\dfrac{y}{3}\)
⇒\(2z=5x\)⇒\(\dfrac{x}{2}=\dfrac{z}{5}\)
⇒\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{2x}{6}=\dfrac{3y}{9}=\dfrac{5z}{25}\)\(=\dfrac{2x+3y-5z}{6+9-25}=\dfrac{-60}{-10}=6\)
⇒\(\dfrac{x}{2}=6\)⇒\(x=12\)
⇒\(\dfrac{y}{3}=6\)⇒\(y=18\)
⇒\(\dfrac{z}{5}=6\)⇒\(z=30\)
Vậy \(x=12;y=18;z=30\)
Ta có 3x-2y/5=2z-5x/3=5y-3z/2
=> 3xz-2yz/5z=2zy-5xy/3y=5yx-3zx/2x
=\(\frac{3yz-2xz+2zx-5yx+5xy-3zy}{5z+3x+2y}\) =0
=>3x-2y/5=0=>3x=2y=>x/2=y/3 (1)
2z-5x/3=0=>2z=5x=>z/5=x/2 (2)
Từ (1) và (2) => x/2=y/3=z/5
(bạn tự lm tiếp nhé!)
a)Xét \(x=\dfrac{y}{2}=\dfrac{z}{3}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=k\\y=2k\\z=3k\end{matrix}\right.\) (1)
Thay (1) vào 4x - 3y + 2z = 36
\(\Rightarrow4.k-3.2k+2.3k=36\)
\(\Rightarrow4k-6k+6k=36\Rightarrow4k=36\)
\(\Rightarrow k=\dfrac{36}{4}=9\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=2.4=8\\z=3.4=12\end{matrix}\right.\)
Vậy...............................................................
b) Xét \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{7}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=5k\\y=4k\\z=7k\end{matrix}\right.\) (2)
Thay (2) vào 2x - 3z = 44
\(\Rightarrow2.5k-3.7k=44\)
\(\Rightarrow-11k=44\Rightarrow k=-4\)
\(\Rightarrow\left\{{}\begin{matrix}x=5.\left(-4\right)=-20\\y=4.\left(-4\right)=-16\\z=7.\left(-4\right)=-28\end{matrix}\right.\)
Vậy,................................................
c) Xét \(\dfrac{-x}{7}=\dfrac{y}{11}=\dfrac{-z}{5}=\dfrac{x}{-7}=\dfrac{z}{-5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=-7k\\y=11k\\z=-5k\end{matrix}\right.\) (3)
Thay (3) vào -3z - 2y - x = -88
\(\Rightarrow-3.\left(-5k\right)-2.11k-\left(-7k\right)=-88\)
\(\Rightarrow15k-22k+7k=-88\Rightarrow0k=88\)
\(\Rightarrow k\in\varnothing\)
Suy ra: Không có cặp ( x; y; z) thỏa mãn
Vậy.................................................................
d) Xét \(\dfrac{y}{12}=\dfrac{x}{-5}=\dfrac{z}{11}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=-5k\\y=12k\\z=11k\end{matrix}\right.\) (4)
Thay (4) vào 5y - 2z = 114
\(\Rightarrow6.12k-2.11k=114\)
\(\Rightarrow50k=114\Rightarrow k=2,28\)
\(\Rightarrow\left\{{}\begin{matrix}x=-5.2,28=-11,4\\y=12.2,28=27,36\\z=25,08\end{matrix}\right.\)
Vậy..............................................
e) Xét \(\dfrac{x}{25}=\dfrac{y}{17}=\dfrac{z}{32}=k\)
\(\left\{{}\begin{matrix}x=25k\\y=17k\\z=32k\end{matrix}\right.\) (5)
Thay (5) vào -2z + 3y - 4x = -452
\(\Rightarrow\left(-2\right).32k+3.17k-4.25k=-452\)
\(\Rightarrow-113k=-452\Rightarrow k=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=25.5=100\\y=17.4=68\\z=32.4=128\end{matrix}\right.\)
Vậy.......................................................
a) Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(x=\dfrac{y}{2}=\dfrac{z}{3}\Rightarrow\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\\ \Rightarrow\dfrac{4x}{4}-\dfrac{3y}{6}+\dfrac{2z}{6}=\dfrac{4x-3y+2z}{4-6+6}=\dfrac{36}{4}=9\)
+) \(\dfrac{x}{1}=9\Rightarrow x=9\)
+) \(\dfrac{y}{2}=9\Rightarrow y=18\)
+) \(\dfrac{z}{3}=9\Rightarrow z=27\)
Vậy x = 9; y = 18; z = 27.
tương tự