Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Câu d sửa đề thành BF . BA + CE . CA = BC2
a, Xét △AFH vuông tại F và △ADB vuông tại D
Có: FAH là góc chung
=> △AFH ᔕ △ADB (g.g)
b, Vì △AFH ᔕ △ADB (cmt) \(\Rightarrow\frac{AF}{AD}=\frac{AH}{AB}\)\(\Rightarrow\frac{AB}{AD}=\frac{AH}{AF}\)
Xét △ABH và △ADF
Có: \(\frac{AB}{AD}=\frac{AH}{AF}\)(cmt)
BAH là góc chung
=> △ABH ᔕ △ADF (c.g.c)
c, Xét △HFB vuông tại F và △HEC vuông tại E
Có: FHB = EHC (2 góc đối đỉnh)
=> △HFB ᔕ △HEC (g.g)
\(\Rightarrow\frac{HF}{HE}=\frac{HB}{HC}\)
=> HF . HC = HE . HB
d, Sửa đề thành BF . BA + CE . CA = BC2
Xét △HEC vuông tại E và △AFC vuông tại F
Có: HCE là góc chung
=> △HEC ᔕ △AFC (g.g)
\(\Rightarrow\frac{EC}{FC}=\frac{HC}{AC}\)
=> FC . HC = EC . AC (1)
Xét △HFB vuông tại F và △AEB vuông tại E
Có: FBH là góc chung
=> △HFB ᔕ △AEB (g.g)
\(\Rightarrow\frac{FB}{EB}=\frac{HB}{AB}\)
=> FB . AB = EB . HB (2)
Xét △BFC vuông tại F và △HDC vuông tại D
Có: HCD là góc chung
=> △BFC ᔕ △HDC (g.g)
\(\Rightarrow\frac{FC}{DC}=\frac{BC}{HC}\)
=> FC . HC = BC . DC (3)
Xét △BEC vuông tại E và △BDH vuông tại D
Có: HBD là góc chung
=> △BEC ᔕ △BDH (g.g)
\(\Rightarrow\frac{BC}{BH}=\frac{BE}{DB}\)
=> BC . DB = BE . BH (4)
Từ (1) và (3) => EC . AC = BC . DC
Từ (2) và (4) => FB . AB = BC . DB
Ta có: BF . BA + CE . CA = BC . BD + BC . DC = BC . (BD + DC) = BC . BC = BC2
a: Xét ΔAEB vuông ạti E và ΔAFC vuôg tại F có
góc BAE chung
=>ΔAEB đồng dạg vơi ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng vơi ΔABC
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
=>ΔABE đồng dạng với ΔACF
=>AE*AC=Af*AB
b: Xét ΔANE vuông tại E và ΔACN vuông tại N có
góc NAC chung
=>ΔANE đồng dạng với ΔACN
=>AN^2=AE*AC
c: AM^2=AF*AB
=>AM/AF=AB/AM
=>ΔAMB đồng dạng với ΔAFM
=>góc AMB=90 độ
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
DO đó: ΔABE đồg dạng với ΔACF
Suy ra: AE/AF=AB/AC
hay AE/AB=AF/AC
Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
Do đo: ΔAEF đồng dạng với ΔABC
b: Xét ΔAEH vuông tại E và ΔADC vuông tại D có
góc EAHchung
Do đó: ΔAEH đồng dạg với ΔADC
Suy ra: AE/AD=AH/AC
hay \(AE\cdot AC=AH\cdot AD\)
a) Xét tam giác ABE và tam giác AFC có :
^AEB = ^AFC =90*
^A chung
=> tam giác AEB ~ tam giác AFC (g.g)
b) Từ tam giác ABE ~ tam giác AFC (cma )
=> AF /AE = AC / AB
=> AF.AB=AE.AC (đpcm)
c) Từ AF/AE= AC/AB (cmb )
=> AF/AE=AC/AB
Xét tam giác ABC và tam giác AFE có
^A chung
AF/AE=AC/AB (cmt)
=> tg ABC = tg AFE ( c.g.c )
Hình như câu (a) b đọc sai đỉnh rồi thỳ phải
Mk làm nếu có sai thỳ xl nha !!!
tan giác nhọn ABC nka