K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2021

A B C H

Sửa tam giác ABC cân tại A nhé chứ là tam giác vuông thì chỉ có c.g thôi 

a, Xét tam giác BHA và tam giác AHC ta có : 

AH _ chung 

^BHA = ^AHC = 900

^ABH = ^ACH ( gt ) vì ABC cân tại A

Vậy tam giác BHA = tam giác AHC ( g.c.g )

=> BH = HC ( 2 cạnh tương ứng )

b, Xét tam giác BAH và tam giác CAH ta có : 

BH = HC ( cmt )

^AHB = ^AHC = 900

AH _ chung 

Vậy tam giác BAH = tam giác CAH ( c.g.c )

=> ^BAH = ^CAH ( 2 góc tương ứng )

a) Xét tam giác ABH và tam giác ACH vuông tại H có:

+) AB = AC (chứng minh trên)

+) Góc B = góc C (cmt)

=> Tam giác ABH = tam giác ACH (cạnh huyền - góc nhọn)

=> HB = HC (2 cạnh tương ứng)

b)  Vì tam giác ABH = tam giác ACH nên:

=> Góc BAH = góc CAH (2 góc tương ứng)

a) Hai tam giác vuông ABH và ACH có:

AB=AC(gt)

AH cạnh chung.

Nên ∆ABH=∆ACH(Cạnh huyền-cạnh góc vuông)

Suy ra HB=HC

b)∆ABH=∆ACH(Câu a)

Suy ra ^BAH=^CAH(Hai góc tương ứng)



20 tháng 4 2017

a) Hai tam giác vuông ABH và ACH có:

AB=AC(gt)

AH cạnh chung.

Nên ∆ABH=∆ACH(Cạnh huyền-cạnh góc vuông)

Suy ra HB=HC

b)∆ABH=∆ACH(Câu a)

Suy ra ˆBAHBAH^=ˆCAHCAH^(Hai góc tương ứng)



Xem thêm tại: http://loigiaihay.com/bai-63-trang-136-sach-giao-khoa-toan-7-tap-1-c42a5157.html#ixzz4envied4H

a) Hai tam giác vuông ABH và ACH có:

AB=AC(gt)

AH cạnh chung.

Nên ∆ABH=∆ACH(Cạnh huyền-cạnh góc vuông)

Suy ra HB=HC

b)∆ABH=∆ACH(Câu a)

Suy ra ˆBAH^=ˆCAH(Hai góc tương ứng)

26 tháng 5 2017

a) Xét tam giác AHB và tam giác AHC có:

\(\widehat{AHB}=\widehat{AHC}=90^o\)

AB=AC(tam giác ABC cân)

\(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân)

Do đó tam giác AHB=tam giác AHC(ch-gn)

Suy ra HB=HC(hai cạnh tương ứng)

b)Vì tam giác AHB=tám giác AHC(câu a)

Nên \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)

12 tháng 2 2019

A B C H

Cm: Xét t/giác ABH và t/giác ACH

có góc B = góc C (vì t/giác ABC cân tại A)

 AB = AC (gt)

 góc AHB = góc AHC = 900 (gt)

=> t/giác ABH = t/giác ACH (ch - gn)

=> HB = HC (hai cạnh tương ứng)

=> góc BAH = góc CAH (hai góc tương ứng)

b) Ta có: HB = HC = AB/2 = 8/2 = 4 (cm)

Áp dụng định lí Py - ta - go vào t/giác ABH vuông tại H, ta có:

 AB2 = HB2 + AH2 

=> AH2 = 52 - 42 = 25 - 16 = 9

=> AH = 3

Vậy AH = 3 cm

c) Xem lại đề

13 tháng 4 2020

a/

*Cách 1:

Ta có: ΔABC cân tại A

=> AC = AB

Và: \(\widehat{ABC}=\widehat{ACB}\)

Hay: \(\widehat{ABH}=\widehat{ACH}\)

Xét 2 tam giác vuông ΔAHB và ΔAHC có:

AB = AC (cmt)

\(\widehat{ABH}=\widehat{ACH}\) (cmt)

Do đó: ΔAHB = ΔAHC (c.h - g.n)

*Cách 2:

Xét ΔAHB và ΔAHC có:

AB = AC (ΔABC cân tại A)

AH: cạnh chung

=> ΔAHB = ΔAHC (c.h - c.g.v)

b) Có: ΔAHB = ΔAHC (câu a)

=> HB = HC (2 cạnh tương ứng)

Và: \(\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng)

c) Xét 2 tam giác vuông ΔEBH và ΔFCH ta có:

Cạnh huyền HB = HC (câu b)

\(\widehat{B}=\widehat{C}\) (ΔABC cân tại A)

=> ΔEBH = ΔFCH (c.h - g.n)

d) Sửa đề: EF // BC

Có: ΔEBH = ΔFCH (câu c)

=> EB = FC (2 cạnh tương ứng)

Có: \(\left\{{}\begin{matrix}AE+BE=AB\\AF+FC=AC\end{matrix}\right.\)

Mà: EB = FC (cmt) và AB = AC (ΔABC cân tại A)

=> AE = AF

=> ΔAEF cân tại A

=> \(\widehat{AEF}=\frac{180^0-\widehat{BAC}}{2}\) (1)

Có: ΔABC cân tại A

=> \(\widehat{ABC}=\frac{180^0-\widehat{BAC}}{2}\) (2)

Từ (1) và (2) => \(\widehat{ABC}=\widehat{AEF}\)

Mà 2 góc này lại là 2 góc đồng vị

=> EF // BC

25 tháng 8 2016

A B C H

a) Xét hai tam giác vuông ABH và ACH

có:+AB=AC( \(\Delta ABC\) cân tại A)

      +AH: cạnh chung

Vậy \(\Delta ABH=\Delta ACH\left(ch-cgv\right)\)

=> HB=HC(  hai cạnh tương ứng)

b) Vì \(\Delta ABH=\Delta ACH\left(cmt\right)\)

nên: góc BAH=góc CAH( hai góc tương ứng)

hihi ^..^ vui^_^

25 tháng 8 2016

A B C H

a) Xét \(\Delta\nu ABH\) và \(\Delta\nu ACH\) có :

   \(AB=AC\left(gt\right)\)

   \(AH\) là cạnh chung

 Do đó : \(\Delta\nu ABH=\Delta\nu ACH\left(ch-gn\right)\)

\(\Rightarrow HB=HC\) ( vì hai cạnh tương ứng )

b )  Vì : \(\Delta\nu ABH=\Delta\nu ACH\)

\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)

 

24 tháng 3 2020

d)  Gọi M là giao điểm của HA và KI 

\(\Delta\)HKB = \(\Delta\)HIC ( theo c) 

=> ^BHK = ^CHI mà ^BHA = ^CHA = 90 độ ( AH vuông BC tại H )

=> ^BHA - ^BHK = ^CHA - ^CHI 

=> KHA = ^IHA hay ^KHM = ^IHM (1)

Xét \(\Delta\)IHM và \(\Delta\)KHM có: HK = HI ( \(\Delta\)HKB = \(\Delta\)HIC ) ; ^KHM = ^IHM ( theo (1)) ; HM chung 

=> \(\Delta\)IHM = \(\Delta\)KHM 

=> ^HMK = ^HMI mà ^HMK + ^HMI = 180 độ 

=> ^HMK = ^HMI = 90 độ 

hay HA vuông KI 

mà HA vuông BC 

=> KI // BC

24 tháng 3 2020

A B C H

a) Xét tam giác AHB và tam giác AHC có:
AH chung

\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)(do AH _|_ BC)

AB=AC (tam giác ABC cân tại A)

=> Tam giác AHB=tam giác AHC (đpcm)

b) Xét tam giác ABC cân tại A có AH là đường cao

=> AH trùng với đường trung tuyến 

=> H là trung điểm BC => HB=HC (đpcm)

17 tháng 2 2020

=> \(\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng).

c) Vì \(\widehat{BAH}=\widehat{CAH}\left(cmt\right)\)

=> \(\widehat{DAH}=\widehat{EAH}.\)

=> \(\Delta HDE\) cân tại \(H\left(đpcm\right).\)

Chúc bạn học tốt!

28 tháng 2 2020

a, ta có tam giác Abc có AH vuông góc với BC ,AB = 5cm ,AC = 5cm suy ra HB= HC , BAC=CAH b, có HB+HC=BC suy ra BC : 2 = 4 hay 8:4 =2 nên HB=HC=4cm Xét tam giác AHB vuông tại H có AB^2 = AH^2 + HB^2 suy ra AH^2 =AB^2 -HB^2 hay : AH^2 =5^2 -4^2 AH^2 = 25-16 AH^2 = 9 suy ra AH = 9 cm c,xét tam giacsHDE có HD vuông góc với AB HE vuông góc với AC suy ra HDE là tam giác cân CHÚC BẠN HỌC TỐT

H A B C

Chứng minh:

a, Xét \(\Delta ABH\)\(\Delta ACH\), có:

\(\)AB=AC (tam giác ABC cân tại A) -> cạnh huyền

AH: cạnh chung -> cạnh góc vuông

\(\widehat{AHB}=\widehat{AHC}->gócvuông\)

=> \(\Delta ABH=\Delta ACH\left(cạnhhuyền-cạnhgócvuông\right)\)

=> \(HB=HC\) (2 cạnh tương ứng)

b, Vì \(\Delta ABH=\Delta ACH\left(cạnhhuyền-cạnhgócvuông\right)\left(cmt\right)\)

=> \(\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng)

CHÚC BẠN HỌC TỐT!

18 tháng 5 2017

Hình tự vẽ nhé

a, Xét tam giác ABH và tam giác ACH có :

AB=AC

Cạnh AH chung

góc AHB = góc AHC

=> tam giác ABH = tam giác ACH ( cạnh huyền góc nhọn )

Suy ra : HB=HC

b, Ta có : tam giác ABH = tam giác ACH ( câu a )

=> Góc BAH = Góc CAH (2 cạnh tương ứng )
Chúc bạn học tốt thanghoa

23 tháng 4 2018

Bạn tự vẽ hình nha.

a) Xét tam giác ABH và tam giác ACH

Ta có: Góc AHB = Góc AHC ( = 90 độ )

          AB = AC ( Vì tam giác ABC cân )

          Góc ABH = Góc ACH ( Vì tam giác ABC cân )

=> Tam giác ABH = Tam giác ACH ( ch-gn )

=> HB = HC ( hai cạnh tương ứng )

     Góc BAH = Góc CAH ( Hai góc tương ứng 0

=> Đpcm

b) Vì HB = HC ( câu a )

Mà BC = HB + HC

=> HB = HC = BC / 2 = 8 / 2 = 4 cm

Xét tam giác ABH vuông tại H

=> AH2 + BH2 = AB2

Hay AH2 + 42 = 52

=> AH2 = 52 - 42

=> AH2 = 9

=> AH = 3

c) Xét tam giác AHD và tam giác AHE

Ta có: Góc ADH = Góc AEH ( = 90 độ )

          AH là cạnh huyển chung

         Góc BAH = Góc CAH ( câu a )

=> Tam giác AHD = Tam giác AHE ( ch-gn )

=> HD = HE ( Hai cạnh tương ứng )

=> Tam giác HDE cân tại H

=> Đpcm

23 tháng 4 2018
bn Myy_Yukru ở phần a) xét tam giác thì bn xét có 2 góc 1 cạnh => là trg hợp c-g-c bn ak