K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc AEM=góc AFM=90 độ

=>AEMF là tứ giác nội tiếp đường tròn đường kính AM

=>AEMF nội tiếp (I)

Xét (I) có

góc EIF là góc ở tâm chắn cung EF

góc EAF là góc nội tiếp chắn cung EF

Do đó: góc EIF=2*góc EAF=120 độ không đổi

b: Xét ΔEIF có IE=IF 

nên ΔIEF cân tại I

=>góc IEF=(180-120)/2=30 độ

Xét ΔIEF có \(\dfrac{IF}{sinIEF}=\dfrac{EF}{sinEIF}\)

=>\(\dfrac{IF}{sin30}=\dfrac{EF}{sin120}\)

=>\(EF=\dfrac{IF}{sin30}\cdot sin120=\dfrac{AM}{2}\cdot\sqrt{3}=AM\cdot\dfrac{\sqrt{3}}{2}\)

 

5 tháng 4 2021


DE ngắn nhất ⇔ AM ngắn nhất. Điều đó xảy ra khi AM là đường cao ΔABC.
                           

27 tháng 9 2021

a) Vì \widehat{AEM}=\widehat{AFM}={90}^\circAEM=AFM=90 nên A, E, M, F thuộc đường tròn tâm I đường kính AM \Rightarrow\ \widehat{EIF}=2\widehat{EAF}={120}^\circ EIF=2EAF=120 (góc ở tâm bằng hai lần góc nội tiếp chắn cung \stackrel\frown{EF}EF).

b) Hạ IH\bot EFIHEF, ta có IE=IF=\frac{1}{2}AMIE=IF=21AM nên \Delta IEFΔIEF cân \Rightarrow HE=HFHE=HF.

Ta lại có: EH=EI.\sin{\widehat{EIH}}=\frac{1}{2}AM.\sin{{60}^\circ}EH=EI.sinEIH=21AM.sin60 (vì \widehat{EIH}=\widehat{FIH}=\frac{1}{2}\widehat{EIF}={60}^\circEIH=FIH=21EIF=60).

Suy ra EH=\frac{a}{2}.\frac{\sqrt3}{2}=\frac{a\sqrt3}{4}\Rightarrow EF=2EH=\frac{a\sqrt3}{2}EH=2a.23=4a3EF=2EH=2a3.

c) EF nhỏ nhất khi AM nhỏ nhất \Leftrightarrow AM \bot BC.

27 tháng 8 2020

A B C H M E F I

Bài làm:

Ta có: Vì ΔABC đều => \(\widehat{A}=\widehat{B}=\widehat{C}=60^0\)

Xét Δ vuông MBE có BE = 1/2 BM 

=> \(EM^2=BM^2-BE^2=BM^2-\frac{1}{4}BM^2=\frac{3}{4}BM^2\)

=> \(EM=\frac{BM\sqrt{3}}{2}\)

Tương tự CM được:  \(FM=\frac{MC\sqrt{3}}{2}\)

=> \(ME+MF=\frac{\left(BM+MC\right)\sqrt{3}}{2}=\frac{BC.\sqrt{3}}{2}=5\sqrt{3}\left(cm\right)\)

b) Ta có: Theo tính chất đường trung tuyến ứng với cạnh huyền

=> \(IE=FI=\frac{AM}{2}=AI\)

Vì IE = AI => Δ AIE cân tại I => \(\widehat{IAE}=\widehat{IEA}\)

=> \(\widehat{EIM}=\widehat{IAE}+\widehat{IEA}=2\widehat{IAE}\)

Tương tự CM được: \(\widehat{FIM}=2\widehat{FAI}\)

=> \(\widehat{EIM}+\widehat{FIM}=2\left(\widehat{IAE}+\widehat{FAI}\right)=2.60^0=120^0\)

=>\(\widehat{EIF}=120^0\)

c) Khi AM = 20cm => \(EI=FI=10cm\)

=> Δ EIF cân tại I => \(\widehat{FEI}=\widehat{IFE}=30^0\)

Xong từ I kẻ đường cao xuống EF làm 1 vài động tác CM ra được: \(EF=10\sqrt{3}cm\)

(ko hiểu thì ib)

d) Áp dụng t/c đường xiên hình chiếu => Min AM = AH khi M trùng H

22 tháng 10 2019

.

9 tháng 7 2016

A B C M H K

a) Dễ thấy \(\Delta HBM\) và \(\Delta KCM\) là nửa các tam giác đều

Đặt BM = x ; CM = y \(\Rightarrow x+y=a\) (không đổi)

Ta có \(MH=sinB.BM=\frac{\sqrt{3}x}{2}\) ; \(MK=sinC.CM=\frac{\sqrt{3}y}{2}\)

\(\Rightarrow MH+MK=\frac{\sqrt{3}}{2}\left(x+y\right)=\frac{\sqrt{3}a}{2}\) không đổi.

b) Vì MH + MK không đổi khi M di chuyển trên BC (câu a) nên MH.MK đạt giá trị lớn nhất \(\Leftrightarrow MH=MK\)

Theo bất đẳng thức Cosi, ta có : \(MH.MK\le\frac{\left(MH+MK\right)^2}{4}=\frac{\left(\frac{\sqrt{3}a}{2}\right)^2}{4}=\frac{3a^2}{16}\)

Vậy Max MH.MK \(=\frac{3a^2}{16}\Leftrightarrow MH=MK\Leftrightarrow MB=MC\Leftrightarrow\)M là trung điểm của BC

22 tháng 3 2021

hình bạn tự vẽ nha :

a.Ta có:

ˆAPM=ˆAHM=ˆAQM=90oAPM^=AHM^=AQM^=90o

A,P,H,M,Q→A,P,H,M,Q∈ đường tròn đường kính  AMAM

b.Từ câu a A,P,H,M,Q(O,12AM)→A,P,H,M,Q∈(O,12AM)

OP=OH=OM=OQ→OP=OH=OM=OQ

Mà ΔABCΔABC đều, AHBCˆBAH=ˆHAC=30oAH⊥BC→BAH^=HAC^=30o

ˆHOQ=2ˆHAQ=60o,ˆPOH=2ˆPAH=60o→HOQ^=2HAQ^=60o,POH^=2PAH^=60o

Do OP=OH,OH=OQOP=OH,OH=OQ

ΔOPH,ΔOHQ→ΔOPH,ΔOHQ đều

PH=OP=OQ=QH→PH=OP=OQ=QH

OPHQ→OPHQ là hình thoi

21 tháng 2 2022

a) Có \widehat{APM}=\widehat{AHM}=\widehat{AQM}=90^oAPM=AHM=AQM=90o nên 5 điểm A, P, M, H, Q cùng thuộc đường tròn đường kính AM.
b) Vì AH là đường cao của tam giác đều ABC nên \widehat{BAH}=\widehat{HAC}=30^oBAH=HAC=30o.

Vì A, P, M, H, Q cùng nằm trên đường tròn tâm O nên OP = OH = OQ = OM và \widehat{POH}=2\widehat{PAH}=60^oPOH=2PAH=60o ; \widehat{QOH}=60^oQOH=60o suy ra OPH và OQH là hai tam giác đều, do đó OQHP là hình thoi.

c) Gọi r là bán kính đường tròn ngoại tiếp đa giác APMHQ thì AM = 2r và OPH, OQH là hai tam giác đều cạnh r. Do đó PQ=2.\dfrac{r\sqrt{3}}{2}=AM.\dfrac{\sqrt{3}}{2}\ge AH.\dfrac{\sqrt{3}}{2}PQ=2.2r3=AM.23AH.23

Do đó PQ ngắn nhất khi và chỉ khi M là trung điểm BC.

 
               
 
22 tháng 8 2021

M A B O C

a, có AM = 2AC  mà để AM lớn nhất

<=> AC lớn nhất

có AC là dây cung của đường tròn (O) đk AB

=> AC =< AB

dấu = xảy ra khi C trùng B

b, AM = 2R.căn 3 mà AM = 2AC

<=> 2AC = 2R.căn 3

<=> AC = R.căn 3

xét tam giác ABC vuông tại C => AC^2 + CB^2 = AB^2 

Mà BA = 2R

=> (R.căn 3)^2 + BC^2 = (2R)^2

<=> 3R^2 + BC^2 = 4R^2

<=> BC^2 = R^2

<=> BC = R

vậy lấy điểm C trên (O) sao cho BC = R để AM = 2R.căn 3

c,  xét tam giác BAM có BC là đường trung tuyến đồng thời là đường cao

=> tam giác BAM cân tại B

=> BA = BM mà AB không đổi

=> BM không đổi

=> khi C di động trên (O) thì M di động trên đường tròn (B) cố định