K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2017

A B C M

a, Xét \(\Delta MAB\) và \(\Delta MAC\) có:

AB = AC (gt)

MB = MC (gt)

AM là cạnh chung

\(\Rightarrow\Delta MAB=\Delta MAC\) (c.c.c)

b, Vì \(\Delta MAB=\Delta MAC\Rightarrow\widehat{AMB}=\widehat{AMC}\) (hai góc tương ứng) (1)

Mà \(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù) (2)

Từ (1) và (2) => \(\widehat{AMB}=\widehat{AMC}=90^o\)

Vậy \(AM⊥BC\)

c, Từ \(\Delta MAB=\Delta MAC\Rightarrow\widehat{BAM}=\widehat{CAM}\) (hai góc tương ứng)

Vậy AM là tia phân giác của góc BAC

18 tháng 8 2017

Sửa để cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. CM: tam giác MAB = tam giác MAC

A B C M

Xét \(\Delta MAB\) và \(\Delta MAC\) có:

AB = AC (gt)

MB = MC (gt)

AM là cạnh chung

\(\Rightarrow\Delta MAB=\Delta MAC\)(c-c-c)

29 tháng 1 2017

A B C D I K M 1 2

a)

Xét tam giác AMB và tam giác DMC có:

AM = DM (gt)

AMB = DMC (2 góc đối đỉnh)

MB = MC (M là trung điểm của BC)

=> Tam giác AMB = Tam giác DMC (c.g.c)

b)

=> ABM = DCM (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong

=> AB // DC

c)

Xét tam giác IMA vuông tại I và tam giác KMD vuông tại K có:

IMA = KMD (2 góc đối đỉnh)

MA = MD (gt)

=> Tam giác IMA = Tam giác KMD (cạnh huyền - góc nhọn)

=> IM = KM (2 cạnh tương ứng)

30 tháng 1 2017

Đỗ Nguyễn Như Bình hăm có gì :D

2 tháng 4 2020

Hình tự vẽ nhavui

a) Xét TG ABC và TG AMC có:

AB = AC (gt)

BM = CM (gt)

AM cạnh chung

Do đó TG AMB = TG AMC ( c-c-c)

b)suy ra góc AMB = AMC (2 góc t/ứ)

mà 2 góc này ở vị trí kề bù

suy ra AM⊥BC

Ta có: AM⊥BC (cmt)

AM⊥a (gt)

suy ra a//BC

tick nhavui

2 tháng 4 2020

a) Xét ΔAMB và ΔAMC , có:

AM là cạnh chung

AB = AC ( gt )

MB = MC ( M là trung điểm của BC )

=> ΔAMB = ΔAMC ( c-c-c )

b) Có: ΔAMB = ΔAMC ( câu a)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)

Mà 2 góc này lại là 2 góc kề bù

=> \(\widehat{AMB}=\widehat{AMC}=180^0:2=90^0\)

=> AM ⊥ BC

Có: \(\left\{{}\begin{matrix}\text{a ⊥ AM}\\BC⊥AM\end{matrix}\right.\)

=> a // BC

c) Có: a ⊥ AM (GT)

Mà: AM // CN (GT)

=> a ⊥ CN

Hay: AN ⊥ CN

Ta có: AM // CN (GT)

=> \(\widehat{MAC}=\widehat{NAC}\) (2 góc so le trong)

Xét 2 tam giác vuông ΔAMC và ΔCNA ta có:

Cạnh huyền AC: chung

\(\widehat{MAC}=\widehat{NAC}\) (cmt)

=> ΔAMC = ΔCNA (c.h - g.n)

7 tháng 1 2019

a)  Xét tgiac ABM và tgiac ACM có:

AB = AC (gt)

góc ABM = góc ACM (gt)

MB = MC (gt)

suy ra:  tgiac ABM = tgiac ACM   (c.g.c)

b) tgiac ABM = tgiac ACM 

=>  góc AMB = góc AMC

mà góc AMB + góc AMC = 1800

=>  góc AMB = góc AMC = 900

hay AM vuông góc với BC

c)  Xét tgiac MBK và tgiac MCA có

MB = MC (gt)

góc BMK = góc CMA (dd)

MK = MA (gt)

suy ra: tgiac MBK = tgiac MCA   (c.g.c)

=>  góc MBK = góc MCA 

mà 2 góc này so le trong

=>   BK // MC

7 tháng 1 2019

A B C M K

CM : Xét tam giác ABM và tam giác ACM

có AB = AC (gt)

  BM = CM (gt)

 AM : chung

=> tam giác ABM = tam giác ACM (c.c.c)

b) Ta có : Tam giác ABM = tam giác ACM (cmt)

=> góc BMA = góc AMC (hai góc tương ứng)

Mà góc BMA + góc AMC = 1800 ( kề bù )

 hay 2\(\widehat{BMA}\)= 1800

=> góc BMA = 1800 : 2

=> góc BMA = 900

c) Xét tam giác AMK và tam giác CMA

có MK = MA (gt)

  góc BMK = góc AMC ( đối đỉnh)

  BM = CM (gt)

=> tam giác AMK = tam giác CMA (c.g.c)

=> góc KBM = góc MCA (hai góc tương ứng)

Mà góc KBM và góc MCA ở vị trí so le trong

=> Bk // AC

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân. Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối...
Đọc tiếp

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.

Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.

Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC

4
1 tháng 5 2020

(tự vẽ hình )

câu 4:

 a) có AB2 + AC= 225

BC= 225

Pytago đảo => \(\Delta ABC\)vuông tại A

b) Xét \(\Delta MAB\)và \(\Delta MDC\)

MA = MD (gt)

BM = BC ( do M là trung điểm của BC ) 

\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )

=> \(\Delta MAB\)\(\Delta MDC\) (cgc)

c) vì \(\Delta MAB\)\(\Delta MDC\)

=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)

=> AB// DC

lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C

Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:

AB =CD (cmt)

AK = KC ( do k là trung điểm của AC )

=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)

=> KB = KD

d. do KB = KD => \(\Delta KBD\)cân tại K

=> \(\widehat{KBD}=\widehat{KDB}\)(1)

có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)

=> MD = 7.5

mà MB = 7.5

=> MB = MD 

=> \(\Delta MBD\)cân tại M

=> \(\widehat{MBD}=\widehat{MDB}\)(2)

Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)

Xét \(\Delta KBI\)và \(\Delta KDN\)có:

\(\widehat{KBI}=\widehat{KDN}\)(cmt)

\(\widehat{KBD}\)chung

KD =KB (cmt) 

=> \(\Delta KBI\)\(\Delta KDN\)(gcg)

=> KN =KI 

=. đpcm

1 tháng 5 2020

câu 5: 

a) Xét \(\Delta ABM\)và \(\Delta MDC\):

MA=MD(gt)

MB=MC (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )

=> \(\Delta BMA=\Delta CMD\)(cgc)

b) Xét \(\Delta\)vuông ABC 

có AM là đường trung tuyến của tam giác 

=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )

=> AM = BM = MC 

có MA =MD => AM = MD =MB =MC

=> BM +MC = AM +MD hay BC =AD

Xét \(\Delta BAC\)và \(\Delta DCA\)

AB =DC

AC chung

BC =DC

=> \(\Delta BAC\)\(\Delta DCA\)(ccc)

c. Xét \(\Delta ABM\)

BM=AM

\(\widehat{ABM}\)= 600

=> đpcm

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

18 tháng 8 2017

A B C M

Nối A với M

Xét tam giác MAB và tam giác MAC

có AB=AC (gt)

AM chung

BM=MC(vì M là trung điểm BC)

=>Tam giác MAB=MAC(c.c.c)

Chúc Bạn Học Tốt

18 tháng 8 2017

Xét ΔMAB và ΔMAC có:

AB = AC (gt)

BM = MC ( M là tđ BC)

AM chung

=> ΔMAB = ΔMAC (c.c.c)

24 tháng 4 2018

Hoàng Thị Ngọc Anh, chú tuổi gì, Thiên Thảo, Guyo, Mai Linh, Phạm Thái Dương, Lưu Thùy Dung, Nguyễn Văn Toàn, Hoa Thiên Lý, Sky SơnTùng, Nguyễn Thái Bình, Akai Haruma, Nhã Doanh, Phạm Nguyễn Tất Đạt, ngonhuminh, Mashiro Shiina, ,Nguyễn Minh Hùng, Nguyễn Thanh Hằng, nguyen thi vang, Phùng Khánh Linh, kuroba kaito, Nguyễn Huy Tú, Hoàng Lê Bảo Ngọc, Trần Việt Linh, Võ Đông Anh Tuấn, Phương An, Ace Legona, soyeon_Tiểubàng giải,...

24 tháng 4 2018

2.CN hay CN.CN vậy bạn ?!!