Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(S_{MNP}=S_{ABC}-S_{APC}-S_{CBM}-S_{ABN}\)
\(S_{APC}+S_{PEC}=S_{AEC}=\frac{1}{3}S_{ABC}\)
\(\Rightarrow S_{AEC}=\frac{1}{3}.126=42\left(cm^2\right)\)
Kẻ \(AH\perp CD,EK\perp CD\left(H,K\in CD\right)\)
Ta có : \(\frac{AH.DC}{2}==S_{ADC}=S_{BDC}=3.S_{DEC}=\frac{3}{2}.EK.DC\)
\(\Rightarrow AK=3EK\Rightarrow S_{ADC}=3S_{EPC}\)
\(\Rightarrow S_{EPC}=\frac{1}{4}S_{AEC}=\frac{1}{4}.42=10,5\left(cm^2\right)\)
\(\Rightarrow S_{APC}=42-10,5=31,5\left(cm^2\right)\)
Mà \(S_{CBM}=S_{BCD}-S_{BMD}\)
Tương tự
\(S_{BCD}=\frac{1}{2}.S_{ABC}=\frac{1}{2}.126=63\left(cm^2\right)\)
\(S_{BMC=54cm^2,}S_{ABN}=28cm^2\)
\(\Rightarrow S_{MNP}=126-31,5-54-28=12,5\left(cm^2\right)\)
Tự vẽ hình nhé Nữ hoàng sến súa là ta
Lấy K là trung điểm của AB. Nối K với E,K và C. Từ đó ta thấy D là trung điểm của AK
Do \(KEKE\)là đường trung bình tam giác \(ABCABC\)nên KE // BCKE // BC và KE=12BCKE=12BC
Lại có \(DEDE\)là đường trung bình tam giác \(AKCAKC\)nên DE // KCDE // KC
Ta thấy \(\Delta KEC\)và \(\Delta FCE\)có:
+ Chung CE
+ \(\widehat{KEC}=\widehat{FCE}\)( so le trong )
+ \(\widehat{ADE}=\widehat{ACK}\)( đồng vị ) ( mà \(\widehat{ADE}=\widehat{CEF}\Rightarrow\widehat{CEF}=\widehat{ACK}\))
\(\Rightarrow\Delta KEC=\Delta FCE\)( g.c.g ) \(\Rightarrow CF=EK\)
Mà \(EK=\frac{1}{2}BC\Rightarrow CF=\frac{1}{2}BC\)
Vậy \(CF=\frac{1}{2}BC\left(đpcm\right)\)
Áp dụng định lí Menelaus :
\(\frac{AE}{CE}\).\(\frac{AD}{BD}\).\(\frac{BF}{CF}\)= 1
Mà AE = CE, AD = 1/3BD
=> BF/CF = 3
=> CF = 1/2 BC
\(\Delta BMN\) A B C M N P H H'
co \(\dfrac{MH'}{AH}=\dfrac{1}{3},\dfrac{BN}{BC}=\dfrac{2}{3}\)\(\Rightarrow\)\(S_{\Delta BMN}=\dfrac{2}{9}S_{\Delta BAC}=6\left(cm^2\right)\)
tương tư \(S_{\Delta AMP}=S_{\Delta CPN}=6\)
vay \(S_{\Delta MNP}=27-\left(6+6+6\right)=9\left(cm^2\right)\)
A B C N D M
Giải
Ta có \(\dfrac{S_{BMN}}{S_{ABN}}=\dfrac{BM}{BA}\) (chung đường cao từ N)
mà \(\dfrac{AM}{AB}=\dfrac{1}{3}\)
Do đó: \(\dfrac{AB-AM}{AB}=\dfrac{3-1}{3}\) hay \(\dfrac{BM}{AB}=\dfrac{2}{3}\)
Nên \(\dfrac{S_{BMN}}{S_{ABN}}=\dfrac{2}{3}\)
Tương tự: \(\dfrac{S_{ABN}}{S_{ABC}}=\dfrac{BN}{BC}=\dfrac{1}{3}\) (chung đường cao từ A)
\(\Rightarrow\) \(\dfrac{S_{BMN}}{S_{ABN}}.\dfrac{S_{ABN}}{S_{ABC}}=\dfrac{2}{3}.\dfrac{1}{3}\)
\(\Rightarrow\) \(\dfrac{S_{BMN}}{S_{ABC}}=\dfrac{2}{9}\)
Tương tự: \(\dfrac{S_{DNC}}{S_{ABC}}=\dfrac{2}{9}\); \(\dfrac{S_{ADM}}{S_{ABC}}=\dfrac{2}{9}\)
Vậy SMND = SABC - SADM - SBMN - SDNC
= SABC - 3 . \(\dfrac{2}{9}\)SABC = \(\dfrac{1}{3}\)SABC = \(\dfrac{1}{3}\) . 30
= 10 (cm2)