Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi G là giao điểm của BM và CN, ta có;
;
Tia AG cắt BC tại I thì .
Xét v...
tự vẽ hình
theo bất đẳng thức tam giác có BM< AB+AM=AB+1/2AC
CN<AC+AN=AC+1/2AN
mặt khác AB+1/2AC< AC+1/2AN( VÌ AB<AC(gt), 1/2 AC<1/2AN)
=> BM<CN
A B C D M N
a) Xét \(\Delta ABC\) có :
\(AB=AC\left(gt\right)\)
=> \(\Delta ABC\) cân tại A
Mà có : AD là đường trung tuyến trong tam giác cân
=> AD đồng thời là đường trung trực trong tam giác cân (tính chất tam giác cân)
=> \(AD\perp BC\) (đpcm)
b) Xét \(\Delta ANC\) và \(\Delta AMB\) có :
\(\widehat{A}:chung\)
\(AB=AC\left(gt\right)\)
\(\widehat{ANC}=\widehat{AMB}\left(=90^o\right)\)
=> \(\Delta ANC\) = \(\Delta AMB\) (cạnh huyền - góc nhọn)
=> AN = AM (2 cạnh góc vuông)
Có: AB=AC (GT)
=>△ABC cân
Do đó: Góc B= Góc C
Xét △BNC và △CMB có
BN=CM(GT)
Góc B= Góc C
BC chung
Do đó: △BNC = △CMB
bạn xét tam giác ANC và TG AMB(c.g.c)
=>góc MCK = GÓC NBK
Có △BNC=△CMB
|=>BNC=BMC
=>TG NKB=TG MKC (G.C.G)
=>BK=KC