Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
b: Xét ΔMBD và ΔMCE có
MB=MC
\(\widehat{B}=\widehat{C}\)
BD=CE
Do đó: ΔMBD=ΔMCE
c: Xét ΔAMD và ΔAME có
AM chung
MD=ME
AD=AE
Do đó:ΔAMD=ΔAME
a, Xét \(\Delta ADE\) có:
\(AD=AE\left(gt\right)\)
\(\Rightarrow\Delta ADE\) cân tại A
\(\Rightarrow\widehat{D}=\widehat{E}=\frac{180^0-\widehat{A}}{2}\) (1)
Xét \(\Delta ABC\) cân tại A có:
\(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\) (2)
Từ (1) và (2) suy ra \(\widehat{D}=\widehat{B}\) mà hai góc đang ở vị trí đồng vị nên:
\(\Rightarrow DE//BC\)
b, Ta có: \(\left\{{}\begin{matrix}AB=AD+DB\\AC=AE+EC\end{matrix}\right.\)
Mà : \(\left\{{}\begin{matrix}AD=AE\left(gt\right)\\AB=AC\left(\Delta ABCcântạiA\right)\end{matrix}\right.\) \(\Rightarrow DB=EC\)
Xét \(\Delta MBD\) và \(\Delta MEC\) có:
\(DB=EC\left(cmt\right)\)
\(\widehat{B}=\widehat{C}\) ( \(\Delta ABC\) cân tại A)
\(BM=CM\) ( M là trung điểm)
\(\Rightarrow\Delta MBD=\Delta MCE\left(c-g-c\right)\)
c, Ta có: \(\Delta MDB=\Delta MEC\left(cmt\right)\)
\(\Rightarrow DM=EM\) ( 2 cạnh tương ứng)
Xét \(\Delta AMD\) và \(\Delta AME\) có:
\(AD=AE\left(gt\right)\)
\(DM=EM\left(cmt\right)\)
\(AM\) là cạnh chung.
\(\Rightarrow\Delta AMD=\Delta AME\) ( c - c - c)
a) Xét tam giác ABM và tam giác ACM, ta có:
AB=AC(gt)
BM=CM(gt)
AM: cạnh chung
Do đó: tam giác ABM = tam giác ACM(c.c.c)
Vậy: Góc AMB = Góc AMC
Mà góc AMB + góc AMC = 180 độ =>
Góc AMB = Góc ACM = 180 độ / 2 = 90 độ
Vậy AM vuông góc với BC
b) Xét tam giác AMD và tam giác AME, ta có:
AD=AE (gt)
Góc DAM = Góc EAM ( theo câu a, cặp góc tương ứng )
AM: cạnh chung
Do đó: Tam giác AMD = tam giác AME (c.g.c)
c) Ta thấy: Góc EDM + Góc KDM = 180 độ ( kề bù )
Vậy ba điểm D,E,K thẳng hàng
=> tam giác ABC cân tại A
Xét ABM và ACM có:
AM chung
AB = AC
A1 = A2 (tam giác ABC cân tại A)
Vậy tam giác ABM = ACM
M1 = M2 ; M1 + M2 = 180 (2 góc kề bù)
=> M1 = M2 = 90
=> AM vuông góc BC
Ta có hình vẽ:
B C A D E N M
a/ Xét tam giác ABC và tam giác AED có:
BA = AE (GT)
góc BAC = góc DAE (đối đỉnh)
CA = AD (GT)
=> tam giác ABC = tam giác AED (c.g.c)
b/ Ta có: tam giác ABC = tam giác AED (câu a)
=> góc DEA = góc ABC (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> BC // DE (đpcm)
c/ Ta có: BC // DE (đã chứng minh trên)
=> góc DNA = góc AMC so le trong
=> đường MN qua A
hay NA trùng AM
hay N,A,M thẳng hàng
bài nài cũng ko pit giải? lạy má
- Xin lỗi bạn nha =)) Hong giải thì thôi có càn phải nói khó nghe vầy hông?