Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E
Trên nửa mặt phẳng bờ AD có chứa điểm C, dựng tam giác đều AED.
Ta có ^ADC = 1800 - ^ABC - ^ACB - ^ACD = 300 => ^ADC = ^ADE/2 => ^ADC = ^EDC
Kết hợp với DA = DE ta được \(\Delta\)DCA = \(\Delta\)DCE (c.g.c) => ^DCE = ^DCA = 1100
Từ đó ^ACE = 3600 - 2^DCA = 3600 - 2.1100 = 1400 => ^ACE = ^CAB
Đồng thời CE = CA (2 cạnh tương ứng) = AB. Xét \(\Delta\)ABC và \(\Delta\)CEA có:
AC chung, ^CAB = ^ACE, AB = CE (cmt) => \(\Delta\)ABC = \(\Delta\)CEA (c.g.c)
Suy ra BC = EA (2 cạnh tương ứng) = AD (Do \(\Delta\)AED đều). Vậy AD = BC (đpcm).
A B C x y
Giải:
a) Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) ( vì 3 góc của 1 tam giác bằng \(180^o\) )
\(\Rightarrow\widehat{A}+70^o+40^o=180^o\)
\(\Rightarrow\widehat{A}+110^o=180^o\)
\(\Rightarrow\widehat{A}=70^o\)
Ta lại có: \(\widehat{A}+\widehat{B}=\widehat{ACx}\) ( vì góc ngoài của một tam giác bằng tổng 2 góc trong không kề với nó )
\(\Rightarrow\widehat{ACx}=70^o+70^o\)
\(\widehat{ACx}=140^o\)
b) Vì Cy là tia phân giác của góc \(\widehat{ACx}\) nên:
\(\widehat{ACy}=\frac{1}{2}\widehat{ACx}=70^o\)
Ta thấy \(\widehat{ACy}=\widehat{A}=70^o\) và 2 góc này ở vị trí so le trong nên AB // Cy
Vậy a) \(\widehat{ACx}=140^o\)
b) AB // Cy
A B C y x
Góc ACx là góc ngoài của tam giác ABC tại C
=> ACx + ACB = 180o => ACx = 180o - ACB = 180o - 40o = 140o
Cy là p/g của góc ACx => góc yCx = 1/2. góc ACx = 1/2 . 140o = 70o
=> góc ABC = yCx mà 2 góc này ở vị trí đồng vị
=> AB // Cy
Câu 1.
Ta có : \(\hept{\begin{cases}\sqrt{17}>\sqrt{16}\\\sqrt{26}>\sqrt{25}\end{cases}}\)
\(\Rightarrow\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1\)
\(\Rightarrow\sqrt{17}+\sqrt{26}+1>4+5+1=10\) (1)
Ta lại có : \(\sqrt{99}< \sqrt{100}=10\) (2)
Từ (1) và (2) \(\Rightarrow\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
Vậy \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
A B C M D E
Trên cạnh BC lấy điểm D sao cho ^BAD=600. Qua B kẻ đường thẳng song song với AC và nó cắt tia AD tại E. Nối E với C và M.
Tam giác ABC cân tại A, ^BAC=1000 => ^ABC=^ACB=400.
Ta có: ^CAD=^BAC-^BAD=1000-600 => ^CAD=400 => ^CAD=^ACB=400 => Tam giác ADC cân tại D => DA=DC (1)
BE//AC => ^CAD=^BED và ^ACD=^EBD (So le trong). Mà ^CAD=^ACD=400 (cmt) => ^BED=^EBD
=> Tam giác BDE cân tại D => DE=DB (2)
Từ (1) và (2) => DA+DE=DC+DB => AE=BC. Mà AM=BC => AE=AM.
Theo cách vẽ thì ^BAD hay ^MAE=600, từ đó => Tam giác MAE đều => AM=ME=AE và ^MAE=^AME=^AEM=600.
Dễ dàng chứng minh được: Tam giác ADB=Tam giác CDE (c.g.c) => AB=CE (2 cạnh tương ứng)
Mà AB=AC => CE=AC. Sau đó có thể chứng minh được: Tam giác MAC=Tam giác MEC (c.c.c)
=> ^AMC=^EMC (2 góc tương ứng) => ^AMC=^EMC=^AME/2=600/2=300.
^AMC=300 hay ^BMC=300 . Lại có: ^MBC là góc ngoài tam giác ABC => ^MBC=^BAC+^ACB=1000+400=1400.
Xét tam giác BMC: ^BCM=1800-(^BMC+^MBC)=1800-(300+1400)=1800-1700=100.
Vậy ^BCM=100.
CÁC BẠN ĐĂNG KÍ KÊNH YOUTOBE NÀY DÙM MÌNH NHA
https://www.youtube.com/channel/UCGY7DExH-jIpzA_7DN9SkHQ
CẢM ƠN CÁC BẠN
o l m . v n
tic cho mình hết âm nhé