Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tam giác \(ABC\)vuông tại \(A\)trung tuyến \(AN\)nên \(AN=\frac{1}{2}BC=NB\)suy ra \(\Delta NAB\)cân tại \(N\)
\(\Rightarrow\widehat{NAB}=\widehat{NBA}\).
Tương tự ta cũng suy ra \(\widehat{MAD}=\widehat{MDA}\)
mà \(DE//BC\Rightarrow\widehat{MDA}=\widehat{NBA}\)
suy ra \(\widehat{NAB}=\widehat{MAD}\)\(\Rightarrow A,M,N\)thẳng hàng.
b) \(AN=\frac{BC}{2},AM=\frac{DE}{2}\Rightarrow AN-AM=\frac{BC-DE}{2}\Leftrightarrow MN=\frac{BC-DE}{2}\).
a) Xét \(\Delta ABC\)có:
\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)(định lí).
\(\Rightarrow\left(\widehat{BAC}+\widehat{ABC}\right)=180^0-\widehat{ACB}\).
Xét \(\Delta PAB\)có:
\(\widehat{APB}+\widehat{PAB}+\widehat{ABP}=180^0\)(định lí).
\(\Rightarrow\widehat{APB}=180^0-\left(\widehat{PAB}+\widehat{ABP}\right)\).
\(\Rightarrow\widehat{APB}=180^0-\frac{\widehat{BAC}+\widehat{ABC}}{2}\).
\(\Rightarrow\widehat{APB}=180^0-\frac{180^0-\widehat{ACB}}{2}\).
\(\Rightarrow\widehat{APB}=90^0+\frac{\widehat{ACB}}{2}\)(điều phải chứng minh).
Ta lại có:
\(\widehat{AMP}=\widehat{MPC}+\widehat{MCP}\)(tính chất góc ngoài của \(\Delta MPC\)).
\(\Rightarrow\widehat{AMP}=90^0+\frac{\widehat{ACB}}{2}\).
Do đó \(\widehat{APB}=\widehat{AMP}\left(=90^0+\frac{\widehat{ACB}}{2}\right)\).
Xét \(\Delta MAP\)và \(\Delta PAB\)có:
\(\widehat{AMP}=\widehat{APB}\)(chứng minh trên).
\(\widehat{MAP}=\widehat{PAB}\)(giả thiết).
\(\Rightarrow\Delta MAP~\Delta PAB\left(g.g\right)\).
\(\Rightarrow\frac{AP}{AB}=\frac{AM}{AP}\)(tỉ số đồng dạng).
\(\Rightarrow AB.AM=AP.AP=AP^2\)(điều phải chứng minh).
Bài 2:
Ta có: M∈AB
⇔MA+MB=AB
Ta có: \(\frac{MA}{MB}=\frac{2}{3}\)
\(\Leftrightarrow\frac{MA}{2}=\frac{MB}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được
\(\frac{MA}{2}=\frac{MB}{3}=\frac{MA+MB}{2+3}=\frac{10}{5}=2\)
Do đó:
\(\left\{{}\begin{matrix}\frac{MA}{2}=2\\\frac{MB}{3}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MA=4cm\\MB=6cm\end{matrix}\right.\)
Vậy: MA=4cm; MB=6cm
Theo định lí Thales đảo, vì MN//BC nên ta có:
AM/AB = MN/BC = AM/(AM+MB) = 1/4
Suy ra MN = 12/4 =3