K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

a) Xét Δ ABM và Δ ACM,có

AB=AC (gt)

AM chung

BM=CM (gt)

=>ΔΔ ABM=ΔΔ ACM(c-c-c)

b)Ta có BM+CM=BC

Mà BC=10cm; BM=CM

=>BM+BM=BC

=>2BM=BC

=>BM=BC/2=10/2=5cm

Ta có Δ ABM=Δ ACM(cmt)

=>Góc BMA=góc CMA(2 góc t/ứng)

\(\widehat{BMA}+\widehat{CMA}=180\left(kb\right)\)

=> \(\widehat{BMA}=\widehat{CMA}=90\)

Áp dụng định lý Py-Ta-Go vào\(\Delta\perp ABM\)

AM2=AB2-BM2

AM2=132-52

AM2=144

=>\(AM=\sqrt{144}=12\)

10 tháng 5 2017

a) Xét 2 \(\Delta ABM\)\(\Delta ACM\), có:

AB = AC ( = 13 cm)

AM cạnh chung

BM = CM ( vì AM là đường trung tuyến )

=> tamgiac ABM = tamgiac ACM ( c.c.c )

b) Ta có: tamgiac ABM = tamgiac ACM

=> góc AMB = góc AMC ( 2 góc tương ứng)

Mà góc AMB + góc AMC = 1800 (kề bù)

=> góc AMB = 1800 : 2 = 900

Nên AM vuông góc BC hay tamgiac ABM vuông tại M

Lại có: BM = CM (vì AM là trung tuyến)

Mà BM + CM = BC

Hay: 2.BM = 10

=> BM = 10 : 2 = 5 (cm)

Áp dụng định lý Pi-ta-go vào tamgiac vuông ABM có:

AB2 = AM2 + BM2

=> AM2 = AB2 - BM2

Hay AM2 = 132 - 52

=> AM2 = 169 - 25 = 144

Vậy AM = \(\sqrt{144}=12\left(cm\right)\)


A B C M ( hình ảnh chỉ mang t/c minh họa )

9 tháng 8 2017

Để mai mk lm giờ pùn ngủ quá ^ ^

10 tháng 8 2017

humlimdimlimdimlimdimlimdim

8 tháng 4 2017

A B C M D 1 2

Câu a tớ chỉnh thế này: \(\Delta ABD=\Delta ACD\)

Giải:

a, ΔABD = ΔACD:

Xét ΔABM và ΔACM có:

+ AB = AC (ΔABC cân tại A)

+ AM là cạnh chung.

+ BM = CM (trung tuyến AM)

=> ΔABM = ΔACM (c - c - c)

=> \(\widehat{A_1}=\widehat{A_2}\) (2 góc tương ứng)

Xét ΔABD và ΔACD có:

+ AB = AC (ΔABC cân tại A)

+ \(\widehat{A_1}=\widehat{A_2}\) (cmt)

+ AD là cạnh chung.

=> ΔABD = ΔACD (c - g - c)

b, ΔBDC cân:

Ta có: ΔABD = ΔACD (câu a)

=> BD = CD (2 cạnh tương ứng)

=> ΔBDC cân tại D.

8 tháng 4 2017

A B C D M

a) ΔABD=ΔACD

Xét ΔABM và ΔACM ta có:

AB=AC (ΔABC cân tại A)

AM chung

BM=BC (gt)

\(\Rightarrow\)ΔABM = ΔACM (c.c.c)

\(\Rightarrow\) \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)

Xét ΔABD và ΔACD ta có:

AB=AC (ΔABC cân tại A)

\(\widehat{BAM}=\widehat{CAM}\) (cmt)

AM cạnh chung

\(\Rightarrow\) ΔABD = ΔACD (c.g.c)

b) ΔBDC cân

Vì ΔABD = ΔACD ( theo câu a)

\(\Rightarrow\)BD=DC (2 cạnh tương ứng)

\(\Rightarrow\)ΔBDC cân tại D (đpcm)

3 tháng 3 2017

A B C M H N K

a) Xét \(\Delta ABM\)\(\Delta ACM\) có:

AB = AC (\(\Delta ABC\) cân tại A)

AM chung

BM = CM (suy từ gt)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

b) Do \(\Delta ABC\) cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

hay \(\widehat{HBM}=\widehat{KCM}\)

Xét \(\Delta HBM\) vuông tại H và \(\Delta KCM\) vuông tại K có;

BM = CM

\(\widehat{HBM}=\widehat{KCM}\) (c/m trên)

\(\Rightarrow\Delta HBM=\Delta KCM\left(ch-gn\right)\)

c) Ta có: \(BM=CM=\dfrac{1}{2}BC\) (M là tđ)

\(\Rightarrow BM=CM=\dfrac{1}{2}.16=8\)

\(\Delta ABM=\Delta ACM\)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)

\(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}\) = \(90^o\)

\(\Rightarrow\Delta ABM\) vuông tại M

Áp dụng định lý pytago vào \(\Delta ABM\) vuông tại M có:

\(AB^2=AM^2+BM^2\)

\(\Rightarrow AM^2=17^2-8^2\)

\(\Rightarrow AM^2=15^2\)

\(\Rightarrow AM=15\)

Lại có: \(AN=NM=\dfrac{1}{2}AM=\dfrac{1}{2}.15=7,5\)

Vậy \(S_{\Delta BNC}=\dfrac{NM.BC}{2}=\dfrac{7,5.16}{2}=60\) \(\left(cm^2\right)\).

26 tháng 3 2017

12 10 10 A B C M a)

Vì AM là trung tuyến đến BC, nên có \(BM=CM=\dfrac{12}{2}=6\left(cm\right)\)

Xét \(\Delta\)ABM và \(\Delta\)ACM, có:

AM là cạnh chung

AB=AC (gt)

BM=MC (AM là trung tuyến đến BC)

\(\Rightarrow\Delta ABM=\Delta ACM\) (c-c-c)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)

\(\widehat{AMB}\)\(\widehat{AMC}\) là 2 góc kề bù, nên:

\(\widehat{AMB}+\widehat{AMC}=180độ\)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180}{2}=90\left(độ\right)\)

\(\Rightarrow AM\perp BC\) (đpcm)

Câu b mik lm ko ra số nguyên nhé!!!

Có j thì bn thông cảm nha!bucminh

Chúc bạn học tốt!!!ok

26 tháng 3 2017

Bn tự vẽ hình nha .

a, Ta có : AB = AC = 10cm

ABC cân tại A .

Mà trong tam giác cân , đường trung tuyến cx là đường cao nên ta có điều phải chứng minh .

26 tháng 4 2017

A B C E M

a) Xét hai tam giác vuông ABM và ECM có:

MB = MC (gt)

MA = ME (gt)

Vậy: \(\Delta ABM=\Delta ECM\left(ch-cgv\right)\)

b) Vì \(\Delta ABM=\Delta ECM\left(cmt\right)\)

Suy ra: \(\widehat{ABM=\widehat{BCE}}\) ( hai góc tương ứng)

\(\widehat{ABM=90^o}\)

Nên \(\widehat{BCE=90^o}\) hay EC \(\perp\) AB

c) Vì \(\Delta ABC\) vuông tại B

nên \(\widehat{ABC>\widehat{ACB}}\) (vì \(\widehat{ABC=90^o}\))

\(\Rightarrow\) AC > AB (quan hệ giữa góc và cạnh đối diện trong tam giác)

Mà AB = CE (\(\Delta ABM=\Delta ECM\))

Do đó: AC > CE

d) Ta có: \(\widehat{BAE=\widehat{AEC}}\) (\(\Delta ABM=\Delta ECM\))

Mà hai góc này ở vị trí so le trong

Vậy: BE // AC.

Sửa đề; AE là phân giác

a: Xét ΔABE và ΔADE có 

AB=AD
\(\widehat{BAE}=\widehat{DAE}\)

AE chung

Do đó: ΔABE=ΔADE

Suy ra: BE=DE

b: Xét ΔEBK và ΔEDC có 

\(\widehat{BEK}=\widehat{DEC}\)

EB=ED

\(\widehat{EBK}=\widehat{EDC}\)

Do đó: ΔEBK=ΔEDC

c: ta có: AB=AD

EB=ED

DO đó:AE là đường trung trực của BD

Ta có: ΔAKC cân tại A

mà AE là đường phân giác

nên AE là đường trung trực của CK

26 tháng 4 2017

g = 90 là sao bạn

10 tháng 5 2017

góc A = 90 độ à

21 tháng 2 2017

TA CÓ AM LÀ TRUNG TUYẾN CỦA BC MÀ BC=CM+BM=>CM=BM=5CM

XÉT TAM GIÁC AMB VUÔNG TẠI M ;ÁP DỤNG ĐL PYTAGO TA CÓ

MA^2+MB^2=AB^2

=>AM^2=AB^2-BM^2

=>AM^2=13^2-10^2

=>AM^2=69

=>AM=\(\sqrt{69}\)

B,

21 tháng 2 2017

thanks

hihi