\(\Delta MNP\) cân tạị P ( P < 90 độ ), vẽ \(MA\perp PN\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2018

M N P C A I

a) Xét \(\Delta PAM;\Delta PCN\) có :

\(\widehat{PAM}=\widehat{PCN}\left(=90^{^O}\right)\)

\(PM=PN\) (Tam giác MNP cân tại P)

\(\widehat{P}:Chung\)

=> \(\Delta PAM=\Delta PCN\)(cạnh huyền - góc nhọn)

=> \(PA=PC\) (2 cạnh tương ứng)

* Mình sửa lại chút nhé , chứng minh CA // MN (có gì sai sót thì bạn góp ý nhé)

Xét \(\Delta PCA\) cân tại P (PA =PC - cmt) có :

\(\widehat{PCA}=\widehat{PAC}=\dfrac{180^o-\widehat{P}}{2}\left(1\right)\)

Xét \(\Delta PMN\) cân tại P có :

\(\widehat{PMN}=\widehat{PNM}=\dfrac{180^o-\widehat{P}}{2}\left(2\right)\)

Từ (1) và (2) => \(\widehat{PCA}=\widehat{PMN}\left(=\dfrac{180^o-\widehat{P}}{2}\right)\)

Mà thấy : 2 góc này ở vị trí đồng vị

Suy ra : CA // MN (đpcm)

b) Xét \(\Delta CMN;\Delta AMN\) có:

\(\widehat{CMN}=\widehat{ANM}\) (tam giác MPN cân tại P)

\(MN:chung\)

\(\widehat{MCN}=\widehat{NAM}\left(=90^o\right)\)

=> \(\Delta CMN=\Delta AMN\) (cạnh huyền - góc nhọn)

=> \(\widehat{CNM}=\widehat{AMN}\) (2 góc tương ứng)

Xét \(\Delta IMN\) có :

\(\widehat{IMN}=\widehat{INM}\) (do \(\widehat{CNM}=\widehat{AMN}\)- cmt)

=> \(\Delta IMN\) cân tại I (đpcm)

c) Xét \(\Delta PMK;\Delta PNK\) có :

\(PM=PN\left(gt\right)\)

\(\widehat{PMK}=\widehat{PNK}\) (Tam giác MNP cân tại P)

\(PK:chung\)

=> \(\Delta PMK=\Delta PNK\left(c.g.c\right)\)

=> \(MK=NK\) (2 cạnh tương ứng)

Do đó : K là trung điểm của MN

20 tháng 1 2018

PMNIEFKH

a) Xét \(\Delta PIM;\Delta PIN\) có :

\(PM=PN\) (tam giác MNP cân tại P)

\(\widehat{MPI}=\widehat{NPI}\) (PI là tia phân giác của \(\widehat{MPN}\) )

\(PI:chung\)

=> \(\Delta PIM=\Delta PIN\left(c.g.c\right)\)

*Cách khác :

Xét \(\Delta PIM;\Delta PIN\) có :

\(\widehat{PMI}=\widehat{PNI}\) (tam giác MNP cân tại P)

\(PM=PN\)(tam giác MNP cân tại P)

\(\widehat{MPI}=\widehat{NPI}\) (PI là tia phân giác của góc MPN)

=> \(\Delta PIM=\Delta PIN\left(g.c.g\right)\)

b) Xét \(\Delta PEI;\Delta PFI\) có :

\(\widehat{PEI}=\widehat{PFI}\left(=90^{^O}\right)\)

\(PI:Chung\)

\(\widehat{EPI}=\widehat{FPI}\left(cmt\right)\)

=> \(\Delta PEI=\Delta PFI\) (cạnh huyền - góc nhọn)

=> \(IE=IF\) (2 cạnh tương ứng)

c) Ta chứng minh được \(\Delta PIK=\Delta PIH\left(g.c.g\right)\)

Suy ra : \(PK=PH\) (2 cạnh tương ứng)

Xét \(\Delta PHK\) có :

\(PK=PH\left(cmt\right)\)

=> \(\Delta PHK\) cân tại P (đpcm)

d) Xét \(\Delta PEF\) cân tại E có :

\(\widehat{PEF}=\widehat{PFE}=\dfrac{180^o-\widehat{P}}{2}\left(1\right)\)

Xét \(\Delta PKH\) cân tại P (cmt) có :

\(\widehat{PKH}=\widehat{PHK}=\dfrac{180^o-\widehat{P}}{2}\left(2\right)\)

Từ (1) và (2) => \(\widehat{PEF}=\widehat{PKH}\left(=\dfrac{180^o-\widehat{P}}{2}\right)\)

Mà thấy : 2 góc này đều ở vị trí đồng vị

=> \(\text{EF // HK (đpcm)}\)

28 tháng 6 2020

a.Xét tam giác AMH và tam giác NMB có 

          MA = MN [ gt ]

         góc AMH = góc NMB [ đối đỉnh ]

         HM = BM [ gt ]

Do đó ; tam giác AMH = tam giác NMB [ c.g.c ]

\(\Rightarrow\)góc AHM = góc NBM 

mà bài cho góc AHM = 90độ

\(\Rightarrow\)góc NBM = 90độ

Vậy NB vuông góc với BC 

b.Theo câu a ; tam giác AMH = tam giác NMB 

\(\Rightarrow\)AH = NB [ cạnh tương ứng ]

Mặt khác ; Xét tam giác AHB vuông tại H có 

AB lớn hơn AH 

\(\Rightarrow\)AB lớn hơn NB 

17 tháng 3 2021

à há lllllllo bạn

17 tháng 3 2021

a) Xét tg ABH và ACK có :

AB=AC(tg ABC cân tại A)

\(\widehat{A}-chung\)

\(\widehat{AHB}=\widehat{AKC}=90^o\)

=> Tg ABH=ACK(cạnh huyền-góc nhọn) (đccm)

b) Do tg ABH=ACK (cmt)

\(\Rightarrow\widehat{ABH}=\widehat{ACK}\)

Mà : \(\widehat{ABC}=\widehat{ACB}\)(tg ABC cân tại A)

\(\Rightarrow\widehat{OBC}=\widehat{OCB}\)

=> Tg OBC cân tại O

=> OB=OC (đccm)

c) Do : AB=AC (tg ABC cân tại A)

MB=NC(gt)

=> AB+BM=AC+CN

=> AM=AN

=> Tg AMN cân tại A

\(\Rightarrow\widehat{M}=\widehat{N}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)

- Do tg ABH=ACK (cmt)

=> AK=AH

=> Tg AKH cân tại A

\(\Rightarrow\widehat{AKH}=\widehat{AHK}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)

- Từ (1) và (2) \(\Rightarrow\widehat{M}=\widehat{AKH}\)

Mà chúng là 2 góc đồng vị

=> KH//MN (đccm)

#H

13 tháng 3 2020

a) Xét Δ vuông PMA và Δ vuông PNC, có:

\(\widehat{P}\) là góc chung

PM=PN (gt)

⇒ΔPMA=ΔPNC (c.h-g.n)

PC=PA (2 cạnh tương ứng)

b)

Ta có: MA và NC là các đường cao và giao nhau tại I

Tia PI là đường cao thứ 3

PK là đường cao.

Ta lại có: ΔMNP cân

MA;NC;PK đồng thời là đường trung trực

MK=NK

K là trung điểm MN

20 tháng 3 2020

thiếu CA // MN

20 tháng 12 2016

M N P E F K I

Giải:
a) Xét \(\Delta IMN,\Delta IPK\) có:

\(IN=IK\left(gt\right)\)

\(\widehat{NIM}=\widehat{PIK}\) ( đối đỉnh )

\(IM=IP\left(=\frac{1}{2}MP\right)\)

\(\Rightarrow\Delta IMN=\Delta IPK\left(c-g-c\right)\)

\(\Rightarrowđpcm\)

b) Vì \(\Delta IMN=\Delta IPK\)

\(\Rightarrow MN=PK\) ( cạnh t/ứng )

\(\Rightarrowđpcm\)

c) Vì \(\Delta IMN=\Delta IPK\)

\(\Rightarrow\widehat{NMI}=\widehat{KPI}\)

hay \(\widehat{EMI}=\widehat{FPI}\)

Xét \(\Delta IEM,\Delta IFP\) có:
\(\widehat{EMI}=\widehat{FPI}\left(cmt\right)\)

\(IM=IP\left(=\frac{1}{2}MP\right)\)

\(\widehat{EIM}=\widehat{FIP}\) ( đối đỉnh )

\(\Rightarrow\Delta IEM=\Delta IFP\left(g-c-g\right)\)

\(\Rightarrow\widehat{MEI}=\widehat{PFI}\)

\(\Rightarrow\widehat{PFI}=90^o\)

\(\Rightarrow IF\perp KP\left(đpcm\right)\)

Vậy...

 

 

26 tháng 11 2016

Ta có hình vẽ:

O P M K I a/ Xét tam giác OPK và tam giác IPK có:

OP = IP (GT)

PK: cạnh chung

\(\widehat{OPK}\)=\(\widehat{IPK}\) (GT)

=> tam giác OPK = tam giác IPK (c.g.c)

b/ Ta có: tam giác OPK = tam giác IPK (câu a)

=> \(\widehat{O}\)=\(\widehat{I}\)=900 (2 góc tương ứng)

Vậy KI \(\perp\)BM (đpcm)

c/ Đề bài bạn cho không có các điểm A,B,C...?

26 tháng 11 2016

Ta có hình vẽ sau:

 

 

 

 

O K P M I 1 2

a) Xét ΔOPK và ΔIPK có:

PK: Cạnh chung

\(\widehat{P_1}\) = \(\widehat{P_2}\) (gt)

PO = PI (gt)

=> ΔOPK = ΔIPK (c.g.c)

b) Vì ΔOPK = ΔIPK (ý a)

=> \(\widehat{O}\) = \(\widehat{I}\) = 90o

=> KI \(\perp\) BM (đpcm)

Không có BC nên k làm được nha bạn^^^

14 tháng 5 2018

a, xét tam giác abd và tam giác ace có
 góc adb=góc aec =90o (gt)
góc a chung
ab=ac (do tam giác abc cân -gt)
suy ra tam giác abd= tam giác ace (cạnh huyền - góc nhọn)
b, có ad=ae (do tam giác abd = tam giác ace-cmt)
suy ra tam giác aed cân tại a
c, có ad=ae (cmt)
suy ra a thuộc đường trung trực của ed
xét tam giác aeh và tam giác adh có
góc aeh = góc adh=90o (gt)
ad=ae (cmt)
ah cạnh huyền chung
suy ra tam giác aeh=tam giác adh (cạnh huyền cạnh góc vuông)
suy ra hd=he
suy ra h thuộc đường trung trực của ed
suy ra ah là đường trung trực của ed
d,xét tam giác bdc và tam giác kdc có 
bd=dk (gt)
góc bdc = góc cdk (=90o-gt)
cd chung
suy ra tam giác bdc = tam giác kdc (c.g.c)
suy ra góc dbc = góc dkc       (1)
có góc bdc= góc abc - góc abd
     góc ecb= góc acb - góc ace
mà góc abc=góc acb (do tam giác abc cân tại a -gt) 

      góc abd=góc ace (do tam giác abd=tam giác ace-cmt)
suy ra  góc dbc= góc ecb                 (2)
từ(1)(2) suy ra góc ecb = góc dkc