Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TAM GIÁC ĐỒNG DẠNG
1, a) Tỉ số hai đoạn thẳng AB và AC : \(\frac{AB}{AC}=\frac{6}{15}\)
b) Tỉ số hai đoạn thẳng AB và AC . : \(\frac{AB}{AC}=\frac{6}{18}=\frac{1}{3}\)
2, ΔMNP ~ ΔABC thì : \(\frac{MN}{AB}=\frac{NP}{BC}=\frac{MP}{AC}\)
3, Tìm tam giác đồng dạng có độ dài ba cạnh dưới đây:
A. 4 cm; 5 cm; 6 cm và 4 cm; 5 cm; 7 cm. B. 2 cm; 3 cm; 4 cm và 2 cm ; 5cm ; 4 cm.
C. 6 cm; 5 cm; 7 cm và 6 cm; 5 cm; 8 cm. D. 3 cm; 4 cm; 5cm và 6 cm;8 cm; 10 cm.
4, a) Cho ΔABC có AB=3 cm, AC= 6 cm. Đường phân giác trong của ❏BAC cắt cạnh BC tại E. Biết BD= 2cm. Tính độ dài đoạn thẳng EC ❓
Bạn ơi D ở đâu vậy ?
b) Cho ΔABCΔABC có AB = 6 cm, AC= 8 cm. Đường phân giác trong của ❏BAC cắt cạnh BC tại D. Biết CD= 4 cm. Tính độ dài đoạn thẳng DB ❓
Xét \(\Delta ABC\) có AD là phân giác
\(\Rightarrow\frac{AB}{BD}=\frac{AC}{CD}\Rightarrow BD=\frac{AB.CD}{AC}=3cm\)
5. a) Cho ΔDEF∼ΔABC theo tỉ số đồng dạng k = 2. Tìm tỉ số SDÈFvà SABC
\(\frac{S_{\Delta DEF}}{S_{\Delta ABC}}=k^2=2^2=4\)
b) Cho ΔDEF∼ΔABC theo tỉ số đồng dạng k=\(\frac{1}{2}\). Tìm tỉ số SDEF và SABC
\(\frac{S_{\Delta DEF}}{S_{\Delta ABC}}=k^2=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)
6. Cho ΔABC..Lấy 2 điểm D và E lần lượt nằm trên cạnh AB và AC sao cho AD/AB=AE/AC Kết luận nào sai ❓
A. ΔADE∼ΔABC B. DE//BC
C. AE/AD=AC/AB D. ΔADE=ΔABC
7, Nếu hai tam giác ABC và DEF có góc A= góc D, góc C= góc E thì:
A.ΔABC∼ΔDEF B. ΔABC∼ΔEDF
C. ΔABC∼ΔDFE D.ΔABC∼ΔFED
a) Xét ΔABD và ΔCBF có
\(\widehat{BDA}=\widehat{CFB}\left(=90^0\right)\)
\(\widehat{FBC}\) chung
Do đó: ΔABD\(\sim\)ΔCBF(g-g)
b) Xét ΔAHF và ΔCHD có
\(\widehat{AFH}=\widehat{CDH}\left(=90^0\right)\)
\(\widehat{AHF}=\widehat{CHD}\)(hai góc đối đỉnh)
Do đó: ΔAHF\(\sim\)ΔCHD(g-g)
⇒\(\frac{AH}{CH}=\frac{HF}{HD}=\frac{AF}{CD}=k\)(tỉ số đồng dạng)
hay \(AH\cdot HD=HF\cdot CH\)(đpcm)
Bài 1)
a) Tứ giác AIHK có 3 góc vuông \(\widehat{HKA}=\widehat{HIA}=\widehat{KAI}=90^0\)
Nên suy ra góc còn lại cũng vuông.Tứ giác có 4 góc vuông là hình chữ nhật
b) Câu này không đúng rồi bạn
Nếu thực sự hai tam giác kia đồng dạng thì đầu bài phải cho ABC vuông cân
Vì nếu góc AKI = góc ABC = 45 độ ( IK là đường chéo đồng thời là tia phân giác của hình chữ nhật)
c) Ta có : Theo hệ thức lượng trong tam giác ABC vuông
\(AB^2=BC.BH=13.4\)
\(\Rightarrow AB=2\sqrt{13}\)
\(AC=\sqrt{9\cdot13}=3\sqrt{13}\)
Vậy \(S_{ABC}=\frac{AB\cdot AC}{2}=\frac{6\cdot13}{2}=39\left(cm^2\right)\)
Bài 2)
a) \(ED=AD-AE=17-8=9\)
Xét tỉ lệ giữa hai cạnh góc vuông trong hai tam giác ABE và DEC ta thấy
\(\frac{AB}{AE}=\frac{ED}{DC}\Leftrightarrow\frac{6}{8}=\frac{9}{12}=\frac{3}{4}\)
Vậy \(\Delta ABE~\Delta DEC\)
b) \(\frac{S_{ABE}}{S_{DEC}}=\frac{AB\cdot AE\cdot\frac{1}{2}}{DE\cdot DC\cdot\frac{1}{2}}=\frac{6\cdot8}{9\cdot12}=\frac{4}{9}\)
c) Kẻ BK vuông góc DC.Suy ra tứ giác ABKD là hình chữ nhật vì có 4 góc vuông
Nên BK = AD và AB = DK
\(\Rightarrow KC=DC-DK=12-6=6\)
Theo định lý Pytago ta có
\(BC=\sqrt{BK^2+KC^2}=\sqrt{17^2+6^2}=5\sqrt{13}\)
Lời giải:
a)
Ta có:
\(\left\{\begin{matrix} AM\parallel BC\\ AD\perp BC\end{matrix}\right.\Rightarrow AM\perp AD\Rightarrow \widehat{MAD}=90^0\)
\(\left\{\begin{matrix} BM\parallel AD\\ AD\perp BC\end{matrix}\right.\Rightarrow BM\perp BC\Rightarrow \widehat{MBD}=90^0\)
Tứ giác $AMBD$ có 3 góc vuông \(\widehat{MAD}=\widehat{MBD}=\widehat{ADB}=90^0\) nên $AMBD$ là hình chữ nhật.
b)
Xét tam giác $AHE$ và $BCE$ có:
\(\widehat{AEH}=\widehat{BEC}=90^0\)
\(\widehat{HAE}=\widehat{CBE}(=90^0-\widehat{C})\)
\(\Rightarrow \triangle AHE\sim \triangle BCE(g.g)\)
c)
Xét tam giác $ADC$ và $BEC$ có:
\(\widehat{ADC}=\widehat{BEC}=90^0\)
\(\widehat{C}\) chung
\(\Rightarrow \triangle ADC\sim \triangle BEC(g.g)\Rightarrow \frac{AC}{BC}=\frac{DC}{EC}\)
Xét tam giác $DEC$ và $ABC$ có:
\(\widehat{C}\) chung
\(\frac{DC}{EC}=\frac{AC}{BC}\) (cmt)
\(\Rightarrow \triangle DEC\sim \triangle ABC(c.g.c)\)
Ta có đpcm.