K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2018

A C H B 1 2

a,Áp dụng định lý - pi-ta-go ta có

\(AB^2=AH^2+HB^2\)

Hay \(20^2=AH^2+12^2\)

\(AH=16\)

\(\Rightarrow AC=\frac{5}{3}.16\approx26,7\)

\(\Delta ABH\)đồng dạng \(\Delta CAHvì\hept{\begin{cases}\widehat{AHB}=\widehat{AHC}\\\frac{AC}{AH}=\frac{AB}{BH}\left(=\frac{5}{3}\right)\end{cases}}\)

b,Vì \(\Delta ABH\)đồng dạng \(\Delta CAH\)

\(\Rightarrow\widehat{A1}=\widehat{C}\left(1\right)\)

\(\Delta AHC\)có \(\widehat{AHC}=90^o\rightarrow\widehat{A2}+\widehat{C}=90^o\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\widehat{A1}+\widehat{A2}=90^o\)

Hay \(\widehat{BAC}=90^o\)

25 tháng 3 2018

cảm ơn 

Hoàng Thị Thanh Huyền =)

a: XétΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

Suy ra: BA/BH=BC/BA

hay \(BA^2=BH\cdot BC\)

b: Xét ΔBAD có MN//AD
nên MN/AD=BM/BA(1)

Xét ΔBCA có MH//AC
nên MH/AC=BM/BA(2)

Từ (1) và (2) suy ra MN/AD=MH/AC

hay MN/MH=AD/AC

16 tháng 5 2019

a) Xét \(\Delta EDC\)và \(\Delta BAC\)

có \(\widehat{EDC}=\widehat{BAC}\left(=90^0\right)\)

\(\widehat{ACB}\)chung

nên \(\Delta EDC\)\(\Delta BAC\)(g - g)

\(\Rightarrow\frac{EC}{BC}=\frac{CD}{AC}\Rightarrow\frac{EC}{CD}=\frac{BC}{AC}\)

Xét \(\Delta BEC\)và \(\Delta ADC\)

có \(\frac{EC}{CD}=\frac{BC}{AC}\)

\(\widehat{ACB}\)chung

nên \(\Delta BEC\)\(\Delta ADC\)(c - g - c)

Xét \(\Delta AHD\)

ta có AH = HD suy ra \(\Delta AHD\)cân tại H

mà  \(\widehat{HAD}=90^0\)nên \(\Delta AHD\)vuông cân tại H

suy ra \(\widehat{ADH}=45^0\)

Gọi giao điểm của AD và BE là O

Xét \(\Delta AOE,\Delta BOD\)

có \(\widehat{OAE}=\widehat{OBD}\)(\(\Delta BEC\)\(\Delta ADC\))

\(\widehat{AOE}=\widehat{BOD}\)(đối đỉnh)

nên \(\Delta AOE\)\(\Delta BOD\)(g - g)

\(\Rightarrow\widehat{AEB}=\widehat{ADH}=45^0\)

Xét \(\Delta ABE\)vuông tại A

có \(\widehat{AEB}=45^0\)nên \(\Delta ABE\)vuông cân tại A

suy ra BE = 2\(\sqrt{AB}\)=\(2\sqrt{2}\)(cm)

b) Gọi giao điểm của AH và BE là I 

dễ chứng minh \(\Delta HBA\)\(\Delta ABC\)(g - g)

\(\Rightarrow\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\)

có AB = 2 cm, BE = \(2\sqrt{2}\left(cm\right)\)

\(\Rightarrow\frac{AB}{BE}=\frac{1}{\sqrt{2}}\Rightarrow\frac{AB^2}{BE^2}=\frac{1}{2}\Rightarrow\frac{BH\cdot BC}{BE^2}=\frac{1}{2}\)

\(\Rightarrow\frac{BH}{BE}\cdot\frac{BC}{BE}=\frac{1}{2}\Rightarrow\frac{BH}{BE}=\frac{1}{2}\cdot\frac{BE}{BC}\Rightarrow\frac{BH}{BE}=\frac{BM}{BC}\)

Xét \(\Delta BHM\)và \(\Delta BEC\)

có \(\frac{BH}{BE}=\frac{BM}{BC}\)

\(\widehat{EBC}\)chung

nên \(\Delta BHM\)\(\Delta BEC\)(c - g - c)

\(\Rightarrow\widehat{IMH}\left(\widehat{BMH}\right)=\widehat{BCE}\)

mà \(\widehat{BCE}=\widehat{IAB}\)(cùng phụ với góc \(\widehat{B}\))

\(\Rightarrow\widehat{IMH}=\widehat{IAB}\)

dễ cm \(\Delta IAB\)\(\Delta IMH\)(g - g)

\(\Rightarrow\widehat{AHM}\left(\widehat{IHM}\right)=\widehat{IBA}=45^0\)

c) có AK là phân giác \(\Delta ABC\)

nên \(\frac{BK}{KC}=\frac{AB}{AC}\Rightarrow\frac{BK}{KC+BK}=\frac{AB}{AB+AC}\Rightarrow\frac{BK}{BC}=\frac{AB}{AB+AC}\)(1)

dễ cm \(\Delta ABH\)\(\Delta CAH\)(g - g)

\(\Rightarrow\frac{AB}{AC}=\frac{AH}{HC}\Rightarrow\frac{AB}{AB+AC}=\frac{AH}{AH+HC}\Rightarrow\frac{AB}{AB+AC}=\frac{HD}{AH+HC}\)(2)

từ (1) và (2) suy ra

\(\frac{BK}{BC}=\frac{HD}{AH+HC}\)

21 tháng 6 2020

a).

Vì hai đường thẳng AB và  DC song song với nhau nên => góc BDC = góc ADB

Xét 2 tam giác AHB và tam giác BCD ta có: Góc AHB = Góc BCD (gt); Góc BDC = Góc ADB. => 2 tam giác đồng dạng với nhau theo trường hợp góc - góc.

b)

Xét 2 tam giác ADH và ADB ta có: Góc D chung; Góc AHD = Góc DAB. => 2 tam giác đồng dạng với nhau theo trường hợp góc - góc.

=> AD/DH = DB/AD <=> AD^2 = DH x AD

c) và d) không biết làm, bạn thông cảm. 

Chúc học tốt.

30 tháng 4 2018

a)  Xét  \(\Delta HAC\)và   \(\Delta ABC\)có:

    \(\widehat{AHC}=\widehat{BAC}=90^0\)

    \(\widehat{C}\)  chung

suy ra:   \(\Delta HAC~\Delta ABC\)

b)   Áp dụng định lý Pytago vào tam giác vuông ABC 

      \(BC^2=AB^2+AC^2\)

\(\Rightarrow\) \(BC^2=12^2+16^2=400\)

\(\Leftrightarrow\)\(BC=\sqrt{400}=20\)cm

 \(\Delta ABC\) có  \(AD\)là phân giác  \(\widehat{BAC}\)

\(\Rightarrow\)\(\frac{DB}{AB}=\frac{DC}{AC}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

     \(\frac{DB}{AB}=\frac{DC}{AC}=\frac{DB+DC}{AB+AC}=\frac{20}{12+16}=\frac{5}{7}\)

suy ra:  \(\frac{DB}{AB}=\frac{5}{7}\)\(\Rightarrow\)\(DB=8\frac{4}{7}\)           

             \(\frac{DC}{AC}=\frac{5}{7}\)\(\Rightarrow\)\(DC=11\frac{3}{7}\)

c)   Xét  \(\Delta CED\)và    \(\Delta CAB\)có:

      \(\widehat{CED}=\widehat{CAB}=90^0\)

      \(\widehat{ECD}\) chung

suy ra:   \(\Delta CED~\Delta CAB\)

\(\Rightarrow\)\(\frac{CE}{AC}=\frac{ED}{AB}\)

\(\Rightarrow\)\(CE.AB=AC.ED\)  (đpcm)

1 tháng 5 2018

thực ra mk cần nhất là ý d còn lại mk tự lm theo cách của mk rùi có bn nào tốt bụng giúp mk vs