K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
1 tháng 7 2020
a, \(\Delta ABC\) và \(\Delta DEC\) có
\(\widehat{BAC}=\widehat{EDC}\left(gt\right)\)
do đó \(\Delta ABC\sim\Delta DEC\)
b,từ câu a suy ra
\(\frac{AB}{DE}=\frac{AC}{DC}hay\frac{AB}{AC}=\frac{DE}{DC}\)(1)
do AD là tia phân giác của góc BAC ta có
\(\frac{AB}{AC}=\frac{BD}{CD}\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{DE}{DC}=\frac{DB}{DC}dođóDE=BD\)
Kẻ phân giác AD (D thuộc BC)
\(\Rightarrow\widehat{B}=\widehat{BAD}=\widehat{CAD}=\dfrac{\widehat{A}}{2}\)
Xét hai tam giác ABC và DAC có:
\(\left\{{}\begin{matrix}\widehat{C}\text{ chung}\\\widehat{B}=\widehat{CAD}\end{matrix}\right.\) \(\Rightarrow\Delta ABC\sim\Delta DAC\left(g.g\right)\)
\(\Rightarrow\dfrac{AC}{DC}=\dfrac{BC}{AC}\Rightarrow DC=\dfrac{AC^2}{BC}=\dfrac{27}{4}\)
\(\Rightarrow BD=BC-DC=\dfrac{21}{4}\)
Áp dụng định lý phân giác:
\(\dfrac{BD}{AB}=\dfrac{DC}{AC}\Rightarrow AB=\dfrac{BD.AC}{DC}=7\)