Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(AB^2+AC^2=6^2+8^2=36+64=100\)
\(BC^2=10^2=100\)
=> \(AB^2+AC^2=BC^2\)
=> Tg ABC vuông tại A(định lí Pytago đảo)
b) _D đối xứng với H qua AB(gt)=>DH vuông góc AB hay MH vuông góc AB. Mà AB vuông góc AC =>AC //MH hay AN // MH(1)
_Cm tương tự: AM //HN(2)
_(1),(2)=> Tứ giác AMHN là hình bình hành
Mà ^MAN=90° => AMHN là hcn
=> AH=MN (đpcm)
c) _Nối D với E, A với E
_Tg AHN =tg AEN(c.g.c) => AE=AH(3)
Mà AH=MN(cmt) => MN=AE(4)
(3),(4)=> AMNE là hbh => AE // MN(*); AE=MN(5)
_ Xét tg DEH ta có: M là trung điểm DH; N là trung điểm EH (tích chất đối xứng)
=> MN là đường trung bình của tg DEH
=> MN // DE(**); MN= DE/2(6)
_(*),(**)=> D, A, E thẳng hàng(7)
_(5),(6)=> AE= DE/2 kết hợp với (7)=> A là trung điểm DE
=> D đối xứng với E qua A
a) tứ giác AMHN có \(\widehat{A}=\widehat{M}=\widehat{N}=90^0\) => tứ giác AMHN là hình chữ nhật
b) vì O đối dứng H qua M => OM=MH
E đối xứng H qua N => HN=NE
xét tam giác HDE có \(\hept{\begin{cases}OH=MH\\HN=NE\end{cases}\Rightarrow}\)MN là đường trung bình tam giác HDE
=> MN//DE lại có MA // NE => MAEN là hình bình hành
c) có MAEN là hình bình hành => MN=AE
MN là đường trung bình tam giác HDE => \(MN=\frac{1}{2}DE\)
=> \(AE=\frac{1}{2}DE\)=> A là trung điểm DE