\(\Delta ABC\)vuông tại A ,đường cao AH. Gọi I,K theo thứ tự là hình chiếu của H trên...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

2 tháng 12 2015

I là hình chiếu của H trên AB => HI vuông góc vs AB => góc AIH = 900
tương tự ta có: K là hình chiếu của H trên AC => HK vuông góc vs AC => góc AKH = 900
Tứ giác AIHK  là hình chữ nhật vì có BAC=ADH=HKA=900
=>IO=OA(cho O là giao điểm giữa 2 đường chéo AH và IK)
=>góc IAO=góc AIO(1)
Có AM là đường trung tuyến ứng vs cạnh huyền(M là trung điểm BC) của tam giác vuông ABC
 => tam giác ACM cân tại M => góc MAC = góc MCA  (2)
Mặt khác góc MCA= góc IAO vì cùng phụ vs AH.(3)
Từ (1),(2) và (3) => góc IAO= góc MAC= góc MCA
Tam giác AIK vuông tại A nên góc AKI+ góc AIK=900  =>góc MAK + góc IKA =900
Gọi giao điểm của AM vs IK là F thì từ tam giác AKF ta có  góc AFK =900 hay AM vuông góc vs IK

tự vẽ hình nhé ^,^
 

21 tháng 8 2019

giup mình với mai đi hc rồi

12 tháng 5 2018

a)  Xét  \(\Delta ABC\)và    \(\Delta HBA\)có:

         \(\widehat{B}\) chung

        \(\widehat{BAC}=\widehat{BHA}=90^0\)

suy ra:    \(\Delta ABC~\Delta HBA\)  (g.g)

b)  Xét   \(\Delta AIH\)và     \(\Delta AHB\)có:

        \(\widehat{AIH}=\widehat{AHB}=90^0\)

        \(\widehat{IAH}\)  chung

suy ra:    \(\Delta AIH~\Delta AHB\) (g.g)

\(\Rightarrow\)\(\frac{AI}{AH}=\frac{AH}{AB}\)  \(\Rightarrow\)  \(AI.AB=AH^2\)  (1)

Xét    \(\Delta AHK\)và     \(\Delta ACH\)có:

    \(\widehat{HAK}\)chung

   \(\widehat{AKH}=\widehat{AHC}=90^0\)

suy ra:   \(\Delta AHK~\Delta ACH\)  (g.g)

\(\Rightarrow\)\(\frac{AH}{AC}=\frac{AK}{AH}\)

\(\Rightarrow\)\(AK.AC=AH^2\)    (2)

Từ (1) và (2) suy ra:    \(AI.AB=AK.AC\)

c)   \(S_{ABC}=\frac{1}{2}.AH.BC=20\)cm2

Tứ giác  \(HIAK\)có:     \(\widehat{HIA}=\widehat{IAK}=\widehat{AKH}=90^0\)

\(\Rightarrow\)\(HIAK\)là hình chữ nhật

\(\Rightarrow\)\(AH=IK=4\)cm

Ta có:   \(AI.AB=AK.AC\) (câu b)

 \(\Rightarrow\)\(\frac{AI}{AC}=\frac{AK}{AB}\)

Xét    \(\Delta AIK\)và    \(\Delta ACB\)có:

    \(\widehat{IAK}\)chung

   \(\frac{AI}{AC}=\frac{AK}{AB}\) (cmt)

suy ra:   \(\Delta AIK~\Delta ACB\)  (c.g.c)

\(\Rightarrow\)\(\frac{S_{AIK}}{S_{ACB}}=\left(\frac{IK}{BC}\right)^2=\frac{4}{25}\)

\(\Rightarrow\)\(S_{AIK}=\frac{4}{25}.S_{ACB}=3,2\)cm2