Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Hình ảnh mang tính chất minh họa)
A D B M C E K F
a) *Xét \(\Delta ABC\) và \(\Delta DEF\) có:
\(\left\{{}\begin{matrix}AB=DE\left(gt\right)\\\widehat{BAC}=\widehat{EDF}\left(gt\right)\\AC=DF\left(gt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta ABC=\Delta DEF\left(c-g-c\right)\)
b) Vì \(\Delta ABC=\Delta DEF\left(cmt\right)\)
Mà M và K lần lượt là trung điểm của BC và EF
\(\Rightarrow CM=FK\)
c) Vì \(\Delta ABC=\Delta DEF\left(cmt\right)\)
\(\Rightarrow\widehat{ACB}=\widehat{DFE}\) (Hai góc tương ứng)
*Xét \(\Delta ACM\) và \(\Delta DFK\) có:
\(\left\{{}\begin{matrix}AC=DF\left(gt\right)\\\widehat{ACM}=\widehat{DFK}\left(cmt\right)\\CM=FK\left(cmt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta ACM=\Delta DFK\left(c-g-c\right)\)
\(\Rightarrow AM=DK\) (hai góc tương ứng)
Lâu rồi k giải toán, giờ trở lại vs Toán thân iu
Ta có hình vẽ:
A B C D M I K
a/ Xét tam giác ABD và tam giác CMD có:
AD = DC (vì D là trung điểm AC)
góc ADB = góc CDM (đối đỉnh)
DB = DM (GT)
Vậy tam giác ABD = tam giác CMD (c.g.c)
=> AB = CM (2 cạnh tương ứng)
Ta có: tam giác ABD = tam giác CMD
=> góc BAC = góc MCA (2 góc tương ứng)
b/ Xét tam giác AMD và BCD có:
AD = DC (vì D là trung điểm AC)
góc ADM = góc BDC (đối đỉnh)
DM = DB (GT)
Vậy tam giác AMD = tam giác BCD (c.g.c)
=> góc MAD = góc DCB (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AM // BC (đpcm)
c/ Xét tam giác ABC và tam giác AMC có:
AC: cạnh chung
AB = CM (do tam giác ABD = tam giác CMD)
AM = BC (do tam giác AMD = tam giác BCD)
=> tam giác ABC = tam giác AMC (c.c.c)
d/ Ta có: AB = CM (câu a)
Mà I là trung điểm AB
và K là trung điểm CM
=> AI = IB = MK = KC
Xét tam giác IAD và tam giác KCD có:
AI = CK (đã chứng minh trên)
góc BAC = góc MCA (câu a)
AD = DC (vì D là trung điểm AC)
=> tam giác IAD = tam giác KCD (c.g.c)
=> góc IDA = góc KDC (2 góc tương ứng)
Ta có: \(\widehat{ADM}\)+\(\widehat{MDK}\)+\(\widehat{KDC}\)=1800
=> góc ADM + góc MDK + góc IDA = 1800
=> góc IDK = 1800
hay K,D,I thẳng hàng
B A C E D
a, Vì BA = BC => \(\Delta ABC\) cân tại B => \(\widehat{A}=\widehat{C}\)
b, Vì BA = BC => BE = BD
Xét \(\Delta BDA\) và \(\Delta BEC\) có:
BA = BC (gt)
BD = BE (cmt)
\(\widehat{B}\): chung
Do đó \(\Delta BDA=\Delta BEC\left(c.g.c\right)\)
=> \(\widehat{BDA}=\widehat{BEC}\) (2 góc t/ứ)
c, Vì \(\Delta BDA=\Delta BEC\Rightarrow\widehat{BAD}=\widehat{BCE}\) (2 góc tương ứng)
Mà \(\widehat{A}=\widehat{C}\) (câu a)
Do đó \(\widehat{A}-\widehat{BAD}=\widehat{C}-\widehat{BCE}\) hay \(\widehat{CAD}=\widehat{ACE}\)
xét tan giác ABH và ACH
AB=AC (gt)
BH=BC (gt)
AH là cạnh chung
vây tam giác ABH=ACH (c.c.c)
vậy goc AHB=AHC (2 góc tương ứng)
vì AHB+AHC=180 (kề bù)
Mà AHB=AHC
vậy AHB=AHC=180:2=90
vậy AH vuông góc với BC
vi CB vuông góc Cx (gt)
AH vuông góc BC (cmt)
vậy Cx//AH
tam giác vuông EBC có E+B=90
tam giác vuông AHB có BAH+ B=90
Vậy BAH=BEC hay BAH=AEC
A B C D E F M K
a.Xét \(\Delta ABC\)và \(\Delta DEF\)có:
AB=DE và AC=DF(gt)
\(\widehat{BAC}=\widehat{DEF}\)(gt) chỗ này đề bn sai
=> \(\Delta ABC=\Delta DEF\left(cgc\right)\)
b. vì 2 tam giác = nhau
=> BC=EF(2 cạnh tương ứng)
Mà M và K lần lượt là trung điểm của BC và EF.
=> CM=FK
c.Vì 2 tam giác ABC và DEF bằng nhau nên:
\(\widehat{ACB}=\widehat{DFE}\)(2 góc tương ứng)
Xét \(\Delta ACM\)và \(\Delta DFK\)có:
AC=DF(gt)
\(\widehat{ACB}=\widehat{DFE}\)(ch/m trên)
CM=FK(ch/m trên)
=>\(\Delta ACM\)=\(\Delta DFK\)(cgc)
=> AM =DK(2 cạnh tương ứng)
đề có chút sai hay sao ý