K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2018

chịu mình mới lớp 6

17 tháng 8 2018

Jfjfjr

25 tháng 12 2016

I A B C M D E

a) Vì AD // BM nên góc DAI = IBM (so le trong)

Xét ΔDAI và ΔMBI có:

DA = MB (giả thiết)

góc DAI = MBI (chứng minh trên)

AI = BI ( suy từ gt )

=> ΔDAI = ΔMBI ( c.g.c )

=> Góc DIA = MIB ( 2 góc tương ứng ) (1)

mà góc DIB + DIA = 180 độ (kề bù) (2)

Thay (1) vào (2) suy ra được góc DIB + MIB = 180 độ

mà 2 góc này kề nhau nên M, D, I thẳng hàng.

b) Do ΔDAI = ΔMBI nên DI = MI ( 2 cạnh tương ứng )

Xét ΔDIB và ΔMIA có:

DI = MI (chứng minh trên)

góc DIB = MIA (đối đỉnh)

IB = IA (suy từ gt)

=> ΔDIB = ΔMIA (c.g.c)

=> góc IDB = IMA (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong nên AM // DB.

 

25 tháng 12 2016

câu c? sao k giải luôn

a: Xét tứ giác ADBM có 

AD//BM

AD=BM

Do đó: ADBM là hình bình hành

Suy ra: Hai đường chéo AB và DM cắt nhau tại trung điểm của mỗi đường

mà I là trung điểm của AB

nên I là trung điểm của DM

hay D,I,M thẳng hàng

b: Ta có: ADBM là hình bình hành

nên AM//DB

c: Xét tứ giác DECB có 

DE//BC

DE=BC

Do đó: DECB là hình bình hành

Suy ra: CE//DB

Câu a)
Cách khác
Xét tứ giác ADBM có :
AD // BM ( GT )
AD = BM ( GT )
=> tứ giác ADBM là hình bình hành
Mà I là trung điểm AB ( GT )
=> I là trung điểm DM
=> 3 điểm D,I,M thẳng hàng

8 tháng 12 2017

A B C M D E I

a, Vì AD // BM (gt) =>  góc DAB = góc ABM (so le trong)

Xét t/g IAD và t/g IBM có:

IA = IB (gt)

góc DAB = góc ABM 

AD = BM (gt)

=> t/g IAD = t/g IBM (c.g.c)

=> góc DIA = góc BIM (2 góc t/ứ), ID = IM

Mà góc DIA + góc DIB = 180 độ (kề bù)

=> góc DIB + góc BIM = 180 độ

=> góc DIM = 180 độ

=> D,I,M thẳng hàng

b, Xét t/g AIM và t/g BID có:

IA = IB (gt)

góc DIB = góc MIA (đối dỉnh)

ID = IM (câu a)

=> t/g AIM = t/g BID (c.g.c)

=> góc IMA = góc BDI (2 góc t/ứ)

=> AM // DB (1)

c, Vì AE // MC =>  góc EAC = góc ACM (so le trong)

Xét t/g AEC và t/g CMA có:

AE = MC (gt)

góc EAC = góc ACM

AC chung

=> t/g AEC = t/g CMA (c.g.c)

=> góc MAC = góc ACE (2 góc t/ứ)

=> AM // CE (2)

Từ (1) và (2) =>  DB // CE

20 tháng 4 2020

Bạn tự vẽ hình nha!!!

a.)Xét\(\Delta ABD\)\(\Delta ABM\)có:

            \(AD=BM\)

            \(AB:\)Chung

           \(\widehat{DAB}=\widehat{ABM}\left(slt\right)\)

\(\Rightarrow\Delta ABD=\Delta BAM\)

b.)Ta có:\(\Delta ABD=\Delta BAM\)(Theo a)

    \(\Rightarrow\widehat{DBA}=\widehat{BAM}\)(mà 2 góc SLT)

\(\Rightarrow AM//BD\)

c.)Xét\(\Delta ADI\)\(\Delta IMC\)có:

    \(AD=CM\)

   \(\widehat{DAI}=\widehat{IMC}\)

    \(AI=IM\)

\(\Rightarrow\Delta AID=\Delta IMC\)

\(\Rightarrow IA=IC\)

\(\Rightarrow I\)là trung điểm của\(AC\)

\(\Rightarrow I,A,C\)thẳng hàng(đpcm)

P/s:#Study well#

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD...
Đọc tiếp

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :

b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC

 c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAE

Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE

b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .

c ) Chứng minh \(\Delta KBE=\Delta CEB\)

d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .

Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :

a ) AP = QF

b ) \(\Delta APQ=\Delta QFC\)

c ) Q là trung điểm của AC

d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB

Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC

. b ) Chứng minh AD // BC .

c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .

 

Mình đang cần gấp ạ

 

0