K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2020

\(\text{Giả sử ∆A’B’C’ ∽ ∆ABC theo tỉ số k, AM, A’M’ là hai đường trung tuyến tương ứng.}\)

\(\text{∆A’B’C’ ∽ ∆ABC}\)

\(\Rightarrow\widehat{B}=\widehat{B'}\) (1)

và \(\frac{A'B'}{AB}=\frac{B'C'}{BC} \)(2)

\(\text{mà B’C’ = 2B’M’, BC = 2BM}\)(3)

\(\left(1\right),\left(2\right),\left(3\right)\Rightarrow\Delta A'B'M'\)\(\text{đồng dạng }\)\(\Delta ABM\)

\(\Rightarrow\frac{A'M'}{AM}=\frac{A'B'}{AB}=k\)

28 tháng 5 2020

????!!!!
 

31 tháng 5 2020

!!!!?/????

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a) Nếu \(\Delta A'B'C' = \Delta ABC\) thì tam giác \(A'B'C'\) đồng dạng với tam giác \(ABC\). Vì hai tam giác bằng nhau có các góc tương ứng bằng nhau và các cạnh tương ứng bằng nhau.

Khi đó, \(\left\{ \begin{array}{l}\widehat A = \widehat {A'};\widehat B = \widehat {B'};\widehat C = \widehat {C'}\\\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}} = 1\end{array} \right.\). Vậy \(\Delta A'B'C'\backsim\Delta ABC\) và tỉ số đồng dạng là 1.

b) Vì \(\Delta A'B'C'\backsim\Delta ABC\) theo tỉ số đồng dạng là \(k\) nên tỉ số đồng dạng là: \(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}} = k\).

Khi đó, \(\Delta ABC\backsim\Delta A'B'C'\) đồng dạng với tỉ số đồng dạng là: \(\frac{{AB}}{{A'B'}} = \frac{{AC}}{{A'C'}} = \frac{{BC}}{{B'C'}} = \frac{1}{k}\).

Vậy \(\Delta ABC\backsim\Delta A'B'C'\)theo tỉ số \(\frac{1}{k}\).

22 tháng 4 2017

ABABABA′B′ = BCBCBCB′C′= CACACAC′A′= 3/2

=> ∆ABC ∽ ∆A'B'C'

b) CABCCABCCABCCA′B′C′= 3/2

22 tháng 4 2017

a)Xét \(\Delta ABC\) và \(\Delta A'B'C'\) có:

\(\dfrac{AB}{A'B'}=\dfrac{BC}{B'C'}=\dfrac{AC}{A'C'}\)

\(\Rightarrow\Delta ABC\)\(\Delta A'B'C'\)(c.c.c)

b)Từ câu a và áp dụng tính chất tỉ lệ thức ta có:

\(\dfrac{AB}{A'B'}=\dfrac{BC}{B'C'}=\dfrac{AC}{A'C'}=\dfrac{AB+BC+AC}{A'B'+B'C'+A'C'}=\dfrac{3}{2}\)

mà \(C_{ABC}=AB+BC+AC\)

\(C_{A'B'C'}=A'B'+B'C'+A'C'\)

Vậy tỉ số chu vi của \(\Delta ABC\) và \(\Delta A'B'C'\)là:

\(\dfrac{C_{ABC}}{C_{A'B'C'}}=\dfrac{3}{2}\)

20 tháng 4 2020

Hướng dẫn cách hack VIP OLM Vĩnh Viễn siêu dễ chỉ 10 phút là xong: youtube.com/watch?v=zYcnHqUcGZE&t

4 tháng 2 2017

Cho a',b',c' là số đo cạnh của tam giác A'B'C'
       a,b,c là số đo cạnh của tam giác ABC
a) Theo đề bài ta có: \(\frac{a'}{a}=\frac{b'}{b}=\frac{c'}{c}=k=\frac{3}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\frac{a'}{a}=\frac{b'}{b}=\frac{c'}{c}=\frac{a'+b'+c'}{a+b+c}=\frac{P_{A'B'C'}}{P_{ABC}}=k=\frac{3}{5}\)
Vậy tỉ số chu vi hai tam giác đã cho là 3/5
b) Chu vi tam giác ABC là: \(P_{ABC}=40:\left(5-3\right)\cdot5=100\left(dm\right)\)
Chu vi tam giác A'B'C' là:  \(P_{A'B'C'}=P_{ABC}-40dm=100dm-40dm=60\left(dm\right)\)

19 tháng 4 2020

A B C A' B' C'

a, Gọi CV tam giác A'B'C' là P', ABC là P

\(\Delta A'B'C'~\Delta ABC\)theo tỉ số đồng dạng \(k=\frac{3}{5}\)

\(\Rightarrow\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}=\frac{3}{5}\)

Áp dụng t/c DTSBN , ta có  :

\(\frac{3}{5}=\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}\)

\(=\frac{A'B'+B'C'+C'A'}{AB+BC+CA}=\frac{P'}{P}\)

Vậy tỉ số chu vi tam giác A'B'C' và ABC là \(\frac{3}{5}\)