Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn cố gắng tự vẽ hình giùm mình nha...Nếu k vẽ được thì kêu mình 1 tiếng nhé!
a) Nối M với K.
Có MI // BC
=> Góc BMK = Góc MKI
Góc BKM = Góc IMK
(Cặp góc so le trong do đường thẳng MK cắt 2 đường thẳng song song MI và BC)
Xét Tam giác MBK và Tam giác IKM có:
Góc BMK = Góc MKI
Chung cạnh MK
Góc BKM = Góc IMK
=> Tam giác MBK = Tam giác IKM(g.c.g)
=> MB = IK
Mà MB = MA (M là trung điểm của AB)
=> IK = MA(đpcm)
Vậy...
b) Có: AB // IK
=> Góc AMI = Góc MIK (2 góc so le trong do đt MI cắt 2 đường thẳng song song AB và IK) (1)
=> Góc MAI = Góc KIC ( 2 góc đồng vị do đt AC cắt 2 đt song sonh AB và IK)
Có: MI // BC
=> Góc MIK = Góc IKC (2 góc so le trong do đt IK cắt 2 đt song song MI và BC) (2)
Từ (1) và (2) suy ra: Góc IKC = Góc AMI
Xét Tam giác AMI và Tam giác IKC có:
Góc IKC = Góc AMI
AM = IK
Góc MAI = Góc KIC
=> Tam giác AMI = Tam giác IKC
c) Có: Tam giác AMI = Tam giác IKC (câu b)
=> AI = IC (2 cạnh tương ứng)
Vậy...
Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath
Xét tam giác GMC và tam giác DMB
BM=MC(trung tuyen AM)
MBD=MCG( CG song song với BD)
BMD=CMG( đối đỉnh)
=> tam giác GMC=tam giác DMB
=>MD=MG
Mà MD=1/3 AM nên MG=1/3 AM => AG=2/3AM(Đúng với tính chất ba đường trung tuyến của tam giác luôn rồi nè
Vậy G là trọng tâm
Bn tự vẽ hình nha
a, Nối B với I
Vì AB // IK suy ra góc B2= góc I2( 2 góc slt) MI// BK suy ra góc B1=góc I1 ( 2 góc slt). Xét tam giác BMI và tam giác IKB có. Góc I1= góc B1( chứng minh trên)
Góc I2= góc B2 ( chứng minh trên)
IB chung
Suy ra tam giác IBM= tam giác BIK( g. c. g)
Suy ra MB= IK ( 2 cạnh tương ứng )
Mà MB= IK( gt)
Suy ra AM= IK
b, Vì IK // AB( gt)
Suy ra góc A1 = I3( 2 góc đv)(1)
Góc ABC= góc K1(2 góc đv)
Mà MI= BC( gt)
Suy ra góc M1 = góc ABC( 2 góc đv) (2)
Từ (1)(2) suy ra góc K1= góc M1
Xét tam giác AMI và tam giác IKC có
Góc A1= góc I3( chứng minh trên )
AM= IK
Góc M1= góc K1( chứng minh trên )
Suy ra tam giác AMI= tam giác IKC( g. c. g)
c, Vì tam giác AMI= tam giác IKC ( câu b)
Suy ra AI= IC ( 2 cạnh tương ứng )
A B C M N P I H O
a) MP // AC => ^MPB=^CAB; ^PMB=^ACB. Mà ^CAB=^ACB=600
=> ^MPB=^PMB=600 => Tam giác BPM là tam giác đều (đpcm).
b) Tam giác BPM là tam giác đều (cmt) => PM=BP
Ta có: PM//AN; M//AP => PM=AN (Tính chất đoạn chắn)
=> BP=AN.
Tam giác ABC đều và O là trọng tâm nên ta có: ^OBA=^OAC=300 hay ^OBP=^OAN và OB=OA
Xét tam giác OAN và tam giác OBP: BP=AN; OA=OB; ^OAN=^OBP
=> Tam giác OAN= Tam giác OBP (đpcm)
c) Tam giác AIP=Tam giác MIN (g.c.g) => IP=IN hay I là trung điểm của NP
Tam giác OAN=Tam giác OBP (cmt) => ON=OP => O nằm trên trung trực của NP (1)
HP=HN => H nằm trên trung trực của NP (2)
Từ (1) và (2) kết hợp với I là trung điểm của NP => H;I;O thẳng hàng (đpcm).