\(\Delta ABC\)có \(\widehat{A}=90\)độ. TIa phân giác của...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2019

E A B H C 1 2

Cm: a) Xét t/giác ABE và t/giác HBE

có góc A = góc H1 = 900 (gt)

  BE : chung

  góc ABE = góc EBH (gt)

=> t/giác ABE = t/giác HBE (ch - gn)

b) Ta có: t/giác ABE = t/giác HBE (cmt)

=> AE = EH (hai cạnh tương ứng) (1)

Xét t/giác EHC có góc H2 = 900

=> EC > EH (cạnh đối diện với góc vuông là cạnh lớn nhất) (2)

Từ (1) và (2) suy ra EA < EC (Đpcm)

6 tháng 2 2020

Bạn tự vẽ hình nha

Xét hai \(\Delta\) vuông ABE và HBE có:

BE là cạnh huyền chung

\(\widehat{ABE}=\widehat{HBE}\left(gt\right)\)

Vậy \(\Delta ABE=\Delta HBE\left(ch-gn\right)\)

b) ΔABC vuông tại A

\(\Rightarrow\widehat{ABC}+\widehat{ACB}=90^o\)

\(\widehat{ABC}=60^o\)

\(\Rightarrow\widehat{ACB}=30^o\)

ΔEHC vuông tại H

\(\Rightarrow\widehat{HEC}+\widehat{HCE}=90^o\)

\(\widehat{HCE}=30^o\)

\(\Rightarrow\widehat{HEC}=60^o\left(1\right)\)

Ta lại có : \(\widehat{ABE}=\widehat{EBH}=\frac{\widehat{ABC}}{2}=\frac{60^o}{2}=30^o\)

ΔBEH vuông tại H

\(\widehat{EBH}+\widehat{BEH}=90^o\)

\(\widehat{EBH}=30^o\)

\(\Rightarrow\widehat{BEH}=60^o\)

Vì HK // BE

\(\Rightarrow\widehat{BEH}=\widehat{EHK}\) (2 góc so le trong bằng nhau)

\(\widehat{BEH}=60^o\)

nên \(\widehat{EHK}=60^o\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\)ΔEHK là tam giác đều

c) Xét hai tam giác vuông AEM và HEC có:

AE = HE (ΔABE=ΔHBE)

\(\widehat{AEM}=\widehat{HEC}\) (2 góc đối đỉnh)

Vậy: ΔAEM=ΔHEC(cgv−gn)

\(\Rightarrow\)AM = HC (hai cạnh tương ứng)

Ta có: BM = BA + AM

BC = BH + HC

Mà BA = BH (ΔABE=ΔHBE)

AM = HC (cmt)

BM = BC

ΔBMC cân tại B

BN là đường phân giác đồng thời là đường trung tuyến của \(\Delta\) BMC

Nên NM = NC

7 tháng 2 2020

tự vẽ hình bn nha

a) vì BE là p/g của góc B =>góc B1=góc B2

xét tam giác ABE vg tại A và tam giác HBE vg tại H có :

BE chung

góc B1=góc B2( cmt)

=> tam giác ABE = tam giác HBE ( ch-gn)

nhớ tick cho mk

13 tháng 2 2022

A B C E K H

a, Xét t/g ABE và t/g KBE có:

góc BAE = góc BKE = 90 độ

BE chung

góc ABE = góc KBE (gt)

=> t/g ABE = t/g KBE (ch-gn)

b, Do t/g ABE = t/g KBE (cm câu a)

=> góc AEB = góc KEB (2 góc tương ứng)

=> BE là phân giác của góc AEK

c, Xét tg vuông ABC có: góc ABC + góc C = 90 độ

=> góc ABC = 90 độ - góc C = 60 độ

=> góc ABE = góc EBC = góc ABC/2 = 30 độ

Xét tg BEC có góc BCE = góc EBC = 30 độ

=> tg BEC cân tại E

d, tg BEC cân tại E có EK là đường cao

=> EK cũng là đường trung tuyến

=> KB = KC

Xét tg BHC vuông tại H có: HK là đường trung tuyến

=> HK = 1/2 BC = KB = KC

Hay KH = KC (đpcm)

P/s: Trong 1 tam giác vuông bất kỳ, đường trung tuyến ứng với cạnh huyền của tam giác sẽ có độ dài bằng 1/2 cạnh huyền

14 tháng 1 2018

Bạn tự vẽ hình nha 

a) CM: tam giác ABE = tam giác HBE

Xét tam giác ABE (Â=90o) và tam giác HBE (góc H= 90o), ta có:

  Góc ABE = Góc HBE ( BE là p/g góc B)

     BE là cạnh chung

Vậy: tam giác ABE = tam giác HBE ( cạnh huyền-góc nhọn)

c) CM: NM=NC

Xét tam giác AEM và tam giác HEC, ta có:

  góc AEM = góc HEC ( đối đỉnh)

     AE = HE (tam giác ABE = tam gác HBE)

   góc EAM = góc EHC = 90o

Vậy: tam giác AEM = tam giác HEC (g-c-g)

Ta có: AB+AM=BM

          BH+HC=BC

mà BA=BH(tam giác BAE= tam giác BEH)

      AM=HC(tam giác AEM= tam giác HEC)

nên BM=BC

Xét tam giác NBM và tam giác NBC, ta có:

NB là cạnh chung

góc NBM= góc NBC ( BE là p/g góc B)

BM=BC (cmt)

Vậy tam giác NBM= tam giác NBC ( c-g-c)

=> NM=NC ( 2 cạnh tương ứng)

Sorry vì mình khong làm được bài b

Câu 1: 

a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

góc ABE=góc HBE

Do đo: ΔABE=ΔHBE

b: Ta có:BA=BH

EA=EH
Do đó:BE là đường trung trực của AH

c: Ta có: EA=EH

mà EH<EC

nên EA<EC

10 tháng 2 2019

Hỏi đáp Toán

a) Xét hai tam giác vuông tam giác ABE và tam giác HBE ta có:

góc B1 = góc B2 (BE là phân giác của góc B)

BE: cạnh chung

=> tam giác ABE = tam giác HBE (cạnh huyền - góc nhọn)

29 tháng 4 2019

xét \(\Delta abe\)và \(\Delta hbe\)có:

\(\widehat{BAE}=\widehat{BHE}=90^O\)

BE LÀ CẠNH CHUNG

\(\widehat{ABE}=\widehat{HBE}\)(vì  BE là đường phân giác của \(\widehat{B}\))

DO ĐÓ : T/G ABE = T/G HBE (G-C-G)

30 tháng 4 2019

b, tam giác ABE = tam giác HBE (Câu a)

=> EA = EH (đn)

tam giác EHC vuông tại H do EH _|_ BC (gt) => EH < EC

=> AE < EC (tcbc)